Skip to main content

Mechanical Ablation of Larval Zebrafish Spinal Cord

  • Protocol
  • First Online:
Neurobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2746))

  • 617 Accesses

Abstract

Unlike mammals, adult and larval zebrafish exhibit robust regeneration following traumatic spinal cord injury. This remarkable regenerative capacity, combined with exquisite imaging capabilities and an abundance of powerful genetic techniques, has established the zebrafish as an important vertebrate model for the study of neural regeneration. Here, we describe a protocol for the complete mechanical ablation of the larval zebrafish spinal cord. With practice, this protocol can be used to reproducibly injure upward of 100 samples per hour, facilitating the high-throughput screening of factors involved in spinal cord regeneration and repair.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Change history

  • 12 January 2024

    A correction has been published.

References

  1. Alizadeh A, Dyck SM, Karimi-Abdolrezaee (2019) Traumatic spinal cord injury: an overview of pathophysiology, models and acute injury mechanisms. Front Neurol 10:282

    Article  PubMed  PubMed Central  Google Scholar 

  2. Houweling DA, Bär PR, Gispen WH, Joosten EA (1998) Spinal cord injury: bridging the lesion and the role of neurotrophic factors in repair. Prog Brain Res 117:455–471

    Article  CAS  PubMed  Google Scholar 

  3. Hara M, Kobayakawa K, Ohkawa Y, Kumamaru H, Yokota K, Saito T, Kijima K, Yoshizaki S, Harimaya K, Nakashima Y, Okada S (2017) Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat Med 23(7):818–828

    Article  CAS  PubMed  Google Scholar 

  4. Dias DO, Kim H, Holl D, Werne Solnestam B, Lundeberg J, Carlén M, Göritz C, Frisén J (2018) Reducing pericyte-derived scarring promotes recovery after spinal cord injury. Cell 173(1):153–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bradbury EJ, Burnside ER (2019) Moving beyond the glial scar for spinal cord repair. Nat Commun 10(1):3879

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bernstein JJ (1964) Relation of spinal cord regeneration to age in adult goldfish. Exp Neurol 9:161–174

    Article  CAS  PubMed  Google Scholar 

  7. Butler EG, Ward MB (1967) Reconstitution of the spinal cord after ablation in adult Triturus. Dev Biol 15(5):464–486

    Article  CAS  PubMed  Google Scholar 

  8. Tanaka EM, Ferretti P (2009) Considering the evolution of regeneration in the central nervous system. Nat Rev Neurosci 10(10):713–723

    Article  CAS  PubMed  Google Scholar 

  9. Becker CG, Becker T (2015) Neuronal regeneration from ependymo-radial glial cells: cook, little pot, cook! Dev Cell 32(4):516–527

    Article  CAS  PubMed  Google Scholar 

  10. Becker T, Wullimann MF, Becker CG, Bernhardt RR, Schachner M (1997) Axonal regrowth after spinal cord transection in adult zebrafish. J Comp Neurol 377(4):577–595

    Article  CAS  PubMed  Google Scholar 

  11. van Raamsdonk W, Maslam S, de Jong DH, Smit-Onel MJ, Velzing E (1998) Long term effects of spinal cord transection in zebrafish: swimming performances, and metabolic properties of the neuromuscular system. Acta Histochem 100(2):117–131

    Article  PubMed  Google Scholar 

  12. Reimer MM, Kuscha V, Wyatt C, Sörensen I, Frank RE, Knüwer M, Becker T, Becker CG (2009) Sonic hedgehog is a polarized signal for motor neuron regeneration in adult zebrafish. J Neurosci 29(48):15073–15082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Goldshmit Y, Sztal TE, Jusuf PR, Hall TE, Nguyen-Chi M, Currie PD (2012) Fgf-dependent glial cell bridges facilitate spinal cord regeneration in zebrafish. J Neurosci 32(22):7477–7492

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Dias TB, Yang YJ, Ogai K, Becker T, Becker CG (2012) Notch signaling controls generation of motor neurons in the lesioned spinal cord of adult zebrafish. J Neurosci 32(9):3245–3252

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mokalled MH, Patra C, Dickson AL, Endo T, Stainier DY, Poss KD (2016) Injury-induced ctgfa directs glial bridging and spinal cord regeneration in zebrafish. Science 354(6312):630–634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Goldshmit Y, Tang JKKY, Siegel AL, Nguyen PD, Kaslin J, Currie PD, Jusuf PR (2018) Different Fgfs have distinct roles in regulating neurogenesis after spinal cord injury in zebrafish. Neural Dev 13(1):24

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Briona LK, Poulain FE, Mosimann C, Dorsky RI (2015) Wnt/ß-catenin signaling is required for radial glial neurogenesis following spinal cord injury. Dev Biol 403(1):15–21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Vandestadt C, Vanwalleghem GC, Khabooshan MA, Douek AM, Castillo HA, Li M, Schulze K, Don E, Stamatis SA, Ratnadiwakara M, Änkö ML, Scott EK, Kaslin J (2021) RNA-induced inflammation and migration of precursor neurons initiates neuronal circuit regeneration in zebrafish. Dev Cell 56(16):2364–2380

    Article  CAS  PubMed  Google Scholar 

  19. Alper SR, Dorsky RI (2022) Unique advantages of zebrafish larvae as a model for spinal cord regeneration. Front Mol Neurosci 15:983336

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Samuel Henry Crossman or Jan Kaslin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Crossman, S.H., Khabooshan, M.A., Stamatis, SA., Vandestadt, C., Kaslin, J. (2024). Mechanical Ablation of Larval Zebrafish Spinal Cord. In: Dworkin, S. (eds) Neurobiology. Methods in Molecular Biology, vol 2746. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3585-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3585-8_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3584-1

  • Online ISBN: 978-1-0716-3585-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics