Skip to main content

Behavioral Tests for Associative Learning in Caenorhabditis elegans

  • Protocol
  • First Online:
Neurobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2746))

Abstract

Learning is critical for survival as it provides the capacity to adapt to a changing environment. At the molecular and cellular level, learning leads to alterations within neural circuits that include synaptic rewiring, synaptic plasticity, and protein level/gene expression changes. There has been substantial progress in recent years on dissecting how learning and memory is regulated at the molecular and cellular level, including the use of compact invertebrate nervous systems as experimental models. This progress has been facilitated by the establishment of robust behavioral assays that generate a quantifiable readout of the extent to which animals learn and remember. This chapter will focus on protocols of behavioral tests for associative learning using the nematode Caenorhabditis elegans, with its unparalleled genetic tractability, compact nervous system of ~300 neurons, high level of conservation with mammalian systems, and amenability to a suite of behavioral tools and analyses. Specifically, we will provide a detailed description of the methods for two behavioral assays that model associative learning, one measuring appetitive olfactory learning and the other assaying aversive gustatory learning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Magee JC, Grienberger C (2020) Synaptic plasticity forms and functions. Annu Rev Neurosci 43:95–117. https://doi.org/10.1146/annurev-neuro-090919-022842

    Article  CAS  PubMed  Google Scholar 

  2. Byrne JH, Hawkins RD (2015) Nonassociative learning in invertebrates. Cold Spring Harb Perspect Biol 7(5). https://doi.org/10.1101/cshperspect.a021675

  3. Hawkins RD, Byrne JH (2015) Associative learning in invertebrates. Cold Spring Harb Perspect Biol 7(5). https://doi.org/10.1101/cshperspect.a021709

  4. Ardiel EL, Rankin CH (2010) An elegant mind: learning and memory in Caenorhabditis elegans. Learn Mem 17(4):191–201. https://doi.org/10.1101/lm.960510

    Article  CAS  PubMed  Google Scholar 

  5. Rahmani A, Chew YL (2021) Investigating the molecular mechanisms of learning and memory using Caenorhabditis elegans. J Neurochem 159(3):417–451. https://doi.org/10.1111/jnc.15510

    Article  CAS  PubMed  Google Scholar 

  6. Corsi AK, Wightman B, Chalfie M (2015) A transparent window into biology: a primer on Caenorhabditis elegans. Genetics 200(2):387–407. https://doi.org/10.1534/genetics.115.176099

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nance J, Frokjaer-Jensen C (2019) The Caenorhabditis elegans transgenic toolbox. Genetics 212(4):959–990. https://doi.org/10.1534/genetics.119.301506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Stiernagle T (2006) Maintenance of C. elegans. In: Community TCeR, editor. WormBook: WormBook

    Google Scholar 

  9. Fang-Yen C, Alkema MJ, Samuel AD (2015) Illuminating neural circuits and behaviour in Caenorhabditis elegans with optogenetics. Philos Trans R Soc Lond Ser B Biol Sci 370(1677):20140212. https://doi.org/10.1098/rstb.2014.0212

    Article  CAS  Google Scholar 

  10. Kerr RA (2006) Imaging the activity of neurons and muscles. WormBook 1–13. https://doi.org/10.1895/wormbook.1.113.1

  11. Saeki S, Yamamoto M, Iino Y (2001) Plasticity of chemotaxis revealed by paired presentation of a chemoattractant and starvation in the nematode Caenorhabditis elegans. J Exp Biol 204(Pt 10):1757–1764. https://doi.org/10.1242/jeb.204.10.1757

    Article  CAS  PubMed  Google Scholar 

  12. Torayama I, Ishihara T, Katsura I (2007) Caenorhabditis elegans integrates the signals of butanone and food to enhance chemotaxis to butanone. J Neurosci 27(4):741–750. https://doi.org/10.1523/JNEUROSCI.4312-06.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Stein GM, Murphy CT (2014) C. elegans positive olfactory associative memory is a molecularly conserved behavioral paradigm. Neurobiol Learn Mem 115:86–94. https://doi.org/10.1016/j.nlm.2014.07.011

    Article  CAS  PubMed  Google Scholar 

  14. Fadda M, De Fruyt N, Borghgraef C, Watteyne J, Peymen K, Vandewyer E et al (2020) NPY/NPF-related neuropeptide FLP-34 signals from serotonergic neurons to modulate aversive olfactory learning in Caenorhabditis elegans. J Neurosci 40(31):6018–6034. https://doi.org/10.1523/JNEUROSCI.2674-19.2020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kauffman A, Parsons L, Stein G, Wills A, Kaletsky R, Murphy C. C. elegans positive butanone learning, short-term, and long-term associative memory assays. J Vis Exp. 2011(49). https://doi.org/10.3791/2490

  16. Bargmann CI (2006) Chemosensation in C. elegans. WormBook 1–29. https://doi.org/10.1895/wormbook.1.123.1

  17. Sagasti A, Hisamoto N, Hyodo J, Tanaka-Hino M, Matsumoto K, Bargmann CI (2001) The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell 105(2):221–232. https://doi.org/10.1016/s0092-8674(01)00313-0

    Article  CAS  PubMed  Google Scholar 

  18. Wes PD, Bargmann CI (2001) C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 410(6829):698–701. https://doi.org/10.1038/35070581

    Article  CAS  PubMed  Google Scholar 

  19. Bargmann CI, Hartwieg E, Horvitz HR (1993) Odorant-selective genes and neurons mediate olfaction in C. elegans. Cell 74(3):515–527. https://doi.org/10.1016/0092-8674(93)80053-h

    Article  CAS  PubMed  Google Scholar 

  20. Tsunozaki M, Chalasani SH, Bargmann CI (2008) A behavioral switch: cGMP and PKC signaling in olfactory neurons reverses odor preference in C. elegans. Neuron 59(6):959–971. https://doi.org/10.1016/j.neuron.2008.07.038

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kodama E, Jurado P (2007) Butanone: the memory of a scent. J Neurosci 27(20):5267–5268. https://doi.org/10.1523/JNEUROSCI.1322-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Nagashima T, Iino Y, Tomioka M (2019) DAF-16/FOXO promotes taste avoidance learning independently of axonal insulin-like signaling. PLoS Genet 15(7):e1008297. https://doi.org/10.1371/journal.pgen.1008297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Baugh LR, Hu PJ (2020) Starvation responses throughout the Caenorhabditis elegans life cycle. Genetics 216(4):837–878. https://doi.org/10.1534/genetics.120.303565

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lim JP, Fehlauer H, Das A, Saro G, Glauser DA, Brunet A et al (2018) Loss of CaMKI function disrupts salt aversive learning in C. Elegans. J Neurosci 38(27):6114–6129. https://doi.org/10.1523/JNEUROSCI.1611-17.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Suzuki H, Thiele TR, Faumont S, Ezcurra M, Lockery SR, Schafer WR (2008) Functional asymmetry in Caenorhabditis elegans taste neurons and its computational role in chemotaxis. Nature 454(7200):114–117. https://doi.org/10.1038/nature06927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. White JG, Southgate E, Thomson JN, Brenner S (1986) The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond Ser B Biol Sci 314(1165):1–340

    CAS  Google Scholar 

  27. Tomioka M, Adachi T, Suzuki H, Kunitomo H, Schafer WR, Iino Y (2006) The insulin/PI 3-kinase pathway regulates salt chemotaxis learning in Caenorhabditis elegans. Neuron 51(5):613–625. https://doi.org/10.1016/j.neuron.2006.07.024

    Article  CAS  PubMed  Google Scholar 

  28. Ohno H, Sakai N, Adachi T, Iino Y (2017) Dynamics of presynaptic diacylglycerol in a sensory neuron encode differences between past and current stimulus intensity. Cell Rep 20(10):2294–2303. https://doi.org/10.1016/j.celrep.2017.08.038

    Article  CAS  PubMed  Google Scholar 

  29. Satoh Y, Sato H, Kunitomo H, Fei X, Hashimoto K, Iino Y (2014) Regulation of experience-dependent bidirectional chemotaxis by a neural circuit switch in Caenorhabditis elegans. J Neurosci 34(47):15631–15637. https://doi.org/10.1523/JNEUROSCI.1757-14.2014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Gray JM, Hill JJ, Bargmann CI (2005) A circuit for navigation in Caenorhabditis elegans. Proc Natl Acad Sci U S A 102(9):3184–3191. https://doi.org/10.1073/pnas.0409009101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ogg S, Ruvkun G (1998) The C. elegans PTEN homolog, DAF-18, acts in the insulin receptor-like metabolic signaling pathway. Mol Cell 2(6):887–893. https://doi.org/10.1016/s1097-2765(00)80303-2

    Article  CAS  PubMed  Google Scholar 

  32. Lackner MR, Nurrish SJ, Kaplan JM (1999) Facilitation of synaptic transmission by EGL-30 Gqalpha and EGL-8 PLCbeta: DAG binding to UNC-13 is required to stimulate acetylcholine release. Neuron 24(2):335–346. https://doi.org/10.1016/s0896-6273(00)80848-x

    Article  CAS  PubMed  Google Scholar 

  33. Brenner S (1974) The genetics of Caenorhabditis elegans. Genetics 77(1):71–94. https://doi.org/10.1002/cbic.200300625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the Caenorhabditis Genetics Center, which is supported by the National Institutes of Health (P40 OD010440), for providing strains used in data presented here. We also acknowledge our funding sources: Y.L.C is funded by the National Health and Medical Research Council (NHMRC) (GNT1173448), the Rebecca L Cooper Medical Research Foundation (PG2020652), the Flinders University Impact Seed Funding Grant (2022), and the Flinders Foundation (Mary Overton Senior Research Fellowship). A.R is funded by a PhD scholarship supported through the Australian Graduate Research Training Program. A.L.M. is supported by a Flinders University Research Scholarship (Flinders University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yee Lian Chew .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rahmani, A., McMillen, A., Allen, E., Minervini, C., Chew, Y.L. (2024). Behavioral Tests for Associative Learning in Caenorhabditis elegans. In: Dworkin, S. (eds) Neurobiology. Methods in Molecular Biology, vol 2746. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3585-8_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3585-8_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3584-1

  • Online ISBN: 978-1-0716-3585-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics