Skip to main content

Immunohistochemical Analysis of the Drosophila Larval Neuromuscular Junction

  • Protocol
  • First Online:
Neurobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2746))

  • 596 Accesses

Abstract

Synapses are specialized junctions between cells that mediate neurotransmission to modify brain activity and body function. Studies on synapse structure and function play an important role in understanding how neurons communicate and the consequences of their dysfunction in neurological disorders. The Drosophila larval neuromuscular junction is an excellent model for dissecting the cellular and molecular mechanisms of the synapse, with its large size, accessibility, and well-characterized genetics. This protocol describes the steps required for morphological and immunohistochemical analysis of the Drosophila larval neuromuscular junction including its dissection and multiplex labeling of synaptic proteins. This technique can be used to assess the impact of genetic manipulations on synaptic development, integrity, and plasticity, thus providing a valuable tool for probing complex neurological processes in a whole animal system.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ziegler AB et al (2016) The amino acid transporter JhI-21 coevolves with glutamate receptors, impacts NMJ physiology, and influences locomotor activity in drosophila larvae. Sci Rep 6. https://doi.org/10.1038/srep19692

  2. Thomas U, Kobler O, Gundelfinger ED (2010) The drosophila larval neuromuscular junction as a model for scaffold complexes at glutamatergic synapses: benefits and limitations. J Neurogenet 24:109–119. https://doi.org/10.3109/01677063.2010.493589

    Article  CAS  PubMed  Google Scholar 

  3. Prokop A (2006) Organization of the efferent system and structure of neuromuscular junctions in Drosophila. Int Rev Neurobiol 75:71–90. https://doi.org/10.1016/s0074-7742(06)75004-8

    Article  CAS  PubMed  Google Scholar 

  4. Menon KP, Carrillo RA, Zinn K (2013) Development and plasticity of the Drosophila larval neuromuscular junction. Wiley Interdiscip Rev Dev Biol 2:647–670. https://doi.org/10.1002/wdev.108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Marrus SB, Portman SL, Allen MJ, Moffat KG, DiAntonio A (2004) Differential localization of glutamate receptor subunits at the Drosophila neuromuscular junction. J Neurosci 24:1406–1415. https://doi.org/10.1523/jneurosci.1575-03.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Hoang B, Chiba A (2001) Single-cell analysis of Drosophila larval neuromuscular synapses. Dev Biol 229:55–70

    Article  CAS  PubMed  Google Scholar 

  7. Miyazaki T et al (2021) Excitatory and inhibitory receptors utilize distinct post- and trans-synaptic mechanisms in vivo. eLife 10:e59613. https://doi.org/10.7554/eLife.59613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Ruiz-Cañada C, Budnik V (2006) Synaptic cytoskeleton at the neuromuscular junction. Int Rev Neurobiol 75:217–236. https://doi.org/10.1016/s0074-7742(06)75010-3

    Article  PubMed  Google Scholar 

  9. Chou VT, Johnson SA, Van Vactor D (2020) Synapse development and maturation at the drosophila neuromuscular junction. Neural Dev 15:11. https://doi.org/10.1186/s13064-020-00147-5

    Article  PubMed  PubMed Central  Google Scholar 

  10. Miller DL, Ballard SL, Ganetzky B (2012) Analysis of synaptic growth and function in Drosophila with an extended larval stage. J Neurosci 32:13776–13786. https://doi.org/10.1523/jneurosci.0508-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wagh DA et al (2006) Bruchpilot, a protein with homology to ELKS/CAST, is required for structural integrity and function of synaptic active zones in Drosophila. Neuron 49:833–844. https://doi.org/10.1016/j.neuron.2006.02.008

    Article  CAS  PubMed  Google Scholar 

  12. Stogsdill JA, Harwell CC, Goldman SA (2023) Astrocytes as master modulators of neural networks: synaptic functions and disease-associated dysfunction of astrocytes. Ann N Y Acad Sci. https://doi.org/10.1111/nyas.15004

  13. Xing G et al (2018) Neurexin-Neuroligin 1 regulates synaptic morphology and functions via the WAVE regulatory complex in Drosophila neuromuscular junction. eLife 7. https://doi.org/10.7554/eLife.30457

  14. Marqués G et al (2002) The Drosophila BMP type II receptor wishful thinking regulates neuromuscular synapse morphology and function. Neuron 33:529–543

    Article  PubMed  Google Scholar 

  15. Wan HI et al (2000) Highwire regulates synaptic growth in Drosophila. Neuron 26:313–329

    Article  CAS  PubMed  Google Scholar 

  16. Budnik V (1996) Synapse maturation and structural plasticity at Drosophila neuromuscular junctions. Curr Opin Neurobiol 6:858–867. https://doi.org/10.1016/s0959-4388(96)80038-9

    Article  CAS  PubMed  Google Scholar 

  17. Guangming G, Junhua G, Chenchen Z, Yang M, Wei X (2020) Neurexin and neuroligins maintain the balance of ghost and satellite boutons at the drosophila neuromuscular junction. Front Neuroanat 14:19. https://doi.org/10.3389/fnana.2020.00019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Eaton BA, Davis GW (2003) Synapse disassembly. Genes Dev 17:2075–2082

    Article  CAS  PubMed  Google Scholar 

  19. Sutcliffe B, Forero MG, Zhu B, Robinson IM, Hidalgo A (2013) Neuron-type specific functions of DNT1, DNT2 and Spz at the Drosophila neuromuscular junction. PLoS One 8:e75902. https://doi.org/10.1371/journal.pone.0075902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Pielage J, Fetter RD, Davis GW (2005) Presynaptic spectrin is essential for synapse stabilization. Curr Biol 15:918–928

    Article  CAS  PubMed  Google Scholar 

  21. Koch I et al (2008) Drosophila ankyrin 2 is required for synaptic stability. Neuron 58:210–222

    Article  CAS  PubMed  Google Scholar 

  22. Ramachandran P, Barria R, Ashley J, Budnik V (2009) A critical step for postsynaptic F-actin organization: regulation of Baz/Par-3 localization by aPKC and PTEN. Dev Neurobiol 69:583–602. https://doi.org/10.1002/dneu.20728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yichen Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Sun, Y., Zhao, Y., Johnson, T.K., Xie, W. (2024). Immunohistochemical Analysis of the Drosophila Larval Neuromuscular Junction. In: Dworkin, S. (eds) Neurobiology. Methods in Molecular Biology, vol 2746. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3585-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3585-8_16

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3584-1

  • Online ISBN: 978-1-0716-3585-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics