Skip to main content

Active Induction of a Multiple Sclerosis-Like Disease in Common Laboratory Mouse Strains

  • Protocol
  • First Online:
Neurobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2746))

  • 603 Accesses

Abstract

Experimental autoimmune encephalomyelitis (EAE) is a neuroinflammatory disease with facets in common with multiple sclerosis (MS). It is induced in susceptible mammalian species, with rodents as the preferred hosts, and has been used for decades as a model to investigate the immunopathogenesis of MS as well as for preclinical evaluation of candidate MS therapeutics. Most commonly, EAE is generated by active immunization with central nervous system (CNS) antigens, such as whole CNS homogenate, myelin proteins, or peptides derived from these proteins. However, EAE actually represents a spectrum of diseases in which specific combinations of host/CNS antigen exhibit defined clinical profiles, each associated with unique immunological and pathological features. Similar to MS, EAE is a complex disease where development and progression are also modulated by environmental factors; therefore, the establishment of any given EAE variant can be challenging and requires careful optimization. Here, we describe protocols for three EAE variants, successfully generated in our laboratory, and provide additional information as to how to maintain their unique features and reproducibility.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Change history

  • 12 January 2024

    A correction has been published.

References

  1. Baker D, Gerritsen W, Rundle J, Amor S (2011) Critical appraisal of animal models of multiple sclerosis. Mult Scler J 17:647–757

    Article  Google Scholar 

  2. Rivers YM, Schwentker FF (1935) Encephalomyelitis accompanied by myelin destruction experimentally produced in monkeys. J Exp Med 61:689–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Baxter AG (2007) The origin and application of experimental autoimmune encephalomyelitis. Nature 7:904–914

    CAS  Google Scholar 

  4. Mix E, Meyer-Rienecker H, Hartung H-P, Zettl UK (2010) Animal models of multiple sclerosis- potentials and limitations. Prog Neurobiol 92:386–404

    Article  PubMed  PubMed Central  Google Scholar 

  5. Kipp M, Nyamoya S, Hochstrasser T, Amor S (2017) Multiple sclerosis animal models: a clinical and histopathological perspective. Brain Pathol 27:123–137

    Article  PubMed  PubMed Central  Google Scholar 

  6. Bjelobaba I, Begovic-Kupresanin V, Pekovic S, Lavrnja I (2018) Animal models of multiple sclerosis: focus on experimental autoimmune encephalomyelitis. J Neuro Res 96:1021–1042

    Article  CAS  Google Scholar 

  7. Genain CP, Hauser SL (1997) Experimental allergic encephalomyelitis in the New World monkey Callithrix jacchus. Immunol Rev 183:159–172

    Article  Google Scholar 

  8. ’t Hart BA, van Kooyk Y, Geurts JJ, Gran B (2015) The primate autoimmune encephalomyelitis model; a bridge between mouse and man. Ann Clin Transl Neurol 2:581–593

    Article  PubMed  PubMed Central  Google Scholar 

  9. Kap YS, Jagessar SA, Dunham J, ’t Hart BA (2016) The common marmoset as an indispensable animal model for immunotherapy development in multiple sclerosis. Drug Discov Today 21:1200–1205

    Article  CAS  PubMed  Google Scholar 

  10. Pollak Y, Orion E, Goshen I et al (2002) Experimental autoimmune encephalomyelitis-associated behavioral syndrome as a model of ‘depression due to multiple sclerosis’. Brain Behav Immun 16:533–543

    Article  CAS  PubMed  Google Scholar 

  11. Haji N, Mandelosi G, Gentile A et al (2013) TNF-α-mediated anxiety in a mouse model of multiple sclerosis. Exp Neurol 237:296–303

    Article  Google Scholar 

  12. Olechowski C, Tenorio G, Sauve Y, Kerr BJ (2013) Changes in nociceptive sensitivity and object recognition in experimental autoimmune encephalomyelitis (EAE). Exp Neurol 241:113–121

    Article  CAS  PubMed  Google Scholar 

  13. Bonfiglio T, Olivero G, Merega E et al (2017) Prophylactic versus therapeutic fingolimod: restoration of presynaptic defects in mice suffering from experimental autoimmune encephalomyelitis. PLoS One 12:e0170825

    Article  PubMed  PubMed Central  Google Scholar 

  14. Kocovski P, Jiang X, D'Souza CS et al (2019) Platelet depletion is effective in ameliorating anxiety-like behavior and reducing the pro-inflammatory environment in the hippocampus in murine experimental autoimmune encephalomyelitis. J Clin Med 8:162–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kocovski P, Tabassum-Sheikh N, Marinis S et al (2021) Immunomodulation eliminates inflammation in the hippocampus in experimental autoimmune encephalomyelitis, but does not ameliorate anxiety-like behavior. Front Immunol 12:639650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Boeschoten RE, Braamse AMJ, Beekman ATF et al (2017) Prevalence of depression and anxiety in Multiple Sclerosis: a systematic review and meta-analysis. J Neurol Sci 372:331–341

    Article  PubMed  Google Scholar 

  17. Rossi S, Studer V, Motta C et al (2017) Neuroinflammation drives anxiety and depression in relapsing-remitting multiple sclerosis. Neurology 89:1338–1347

    Article  CAS  PubMed  Google Scholar 

  18. Lassmann H (2019) Pathogenic mechanisms associated with different clinical courses of multiple sclerosis. Front Immunol 9:3116

    Article  PubMed  PubMed Central  Google Scholar 

  19. Ayers MM, Hazelwood LJ, Catmull DV et al (2004) Early glial responses in murine models of multiple sclerosis. Neurochem Int 45:409–419

    Article  CAS  PubMed  Google Scholar 

  20. Wang D, Ayers MM, Hazelwood LJ et al (2005) Astrocyte-associated axonal damage in pre-onset stages of experimental autoimmune encephalomyelitis. Glia 51:235–240

    Article  PubMed  Google Scholar 

  21. Huizinga R, Gerritsen W, Heijmans N, Amor S (2008) Axonal loss and grey matter pathology as a direct result of autoimmunity. Neurobiol Dis 32:461–470

    Article  CAS  PubMed  Google Scholar 

  22. Gold R, Linington C, Lassmann H (2006) Understanding pathogenesis and therapy of multiple sclerosis via animal models: 70 years of merits and culprits in experimental autoimmune encephalomyelitis research. Brain 129:1953–1971

    Article  PubMed  Google Scholar 

  23. Baker D, Amor S (2014) Experimental autoimmune encephalomyelitis is a good model of multiple sclerosis if used wisely. Mult Scler Rel Disord 3:555–564

    Article  Google Scholar 

  24. Stromnes IM, Goverman JM (2006) Passive induction of experimental autoimmune encephalomyelitis. Nat Protoc 1:1952–1960

    Article  CAS  PubMed  Google Scholar 

  25. Sun D, Whitaker JN, Huang Z et al (2001) Myelin antigen-specific CD8+ T cells are encephalitogenic and produce severe disease in C57BL/6 mice. J Immunol 166:7579–7987

    Article  CAS  PubMed  Google Scholar 

  26. Terry RL, Ifergan I, Miller SD (2016) Experimental autoimmune encephalomyelitis in mice. Method Mol Biol 1304:145–160

    Article  Google Scholar 

  27. Glatigny S, Betelli E (2018) Experimental autoimmune encephalomyelitis (EAE) as animal models of multiple sclerosis (MS). Cold Spring Harb Perspect Med 8:a028977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Krishnamoorthy G, Lassmann H, Wekerle H, Holz A (2006) Spontaneous opticospinal encephalomyelitis in a double-transgenic mouse model of autoimmune T cell/B cell cooperation. J Clin Invest 116:2385–2392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Kuerten S, Angelov DN (2008) Comparing the CNS morphology and immunobiology of different EAE models in C57BL/6 mice – a step towards understanding the complexity of multiple sclerosis. Ann Anat 190:1–15

    Article  PubMed  Google Scholar 

  30. Miller SD, Karpus WJ, Davidson TS (2007) Experimental autoimmune encephalomyelitis in the mouse. Curr Protoc Immunol Chapter 15:15.1.1–15.1.18

    Google Scholar 

  31. Storch MK, Stefferl A, Brehm U et al (1998) Autoimmunity to myelin oligodendrocyte glycoprotein in rats mimics the spectrum of multiple sclerosis pathology. Brain Pathol 8:681–694

    Article  CAS  PubMed  Google Scholar 

  32. Emerson MR, Gallagher RJ, Marquis JG, Le Vine SM (2009) Enhancing the ability of experimental autoimmune encephalomyelitis to serve as a more rigorous model of multiple sclerosis through refinement of experimental design. Comp Med 59:112–128

    CAS  PubMed  PubMed Central  Google Scholar 

  33. Weissert R, Wallstrom E, Storch M et al (1998) MHC haplotype-dependent regulation of MOG-induced EAE in rats. J Clin Invest 102:1265–1273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Wang L, Winnewisser J, Federle C et al (2017) Epitope-specific tolerance modes differentially specify susceptibility to proteolipid protein-induced experimental autoimmune encephalomyelitis. Front Immunol 8:1511

    Article  PubMed  PubMed Central  Google Scholar 

  35. Bernard C, Johns TG, Slavin A et al (1997) Myelin oligodendrocyte glycoprotein: a novel candidate autoantigen in multiple sclerosis. J Mol Med 75:77–88

    Article  CAS  PubMed  Google Scholar 

  36. Sobel RA, van der Veen RC, Lees MB (1986) The immunopathology of chronic experimental allergic encephalomyelitis induced in rabbits with bovine proteolipid protein. J Immunol 136:157–163

    Article  CAS  PubMed  Google Scholar 

  37. Martinsen V, Kursula P (2022) Multiple sclerosis and myelin basic protein: insights into protein disorder and disease. Amino Acids 54:99–109

    Article  CAS  PubMed  Google Scholar 

  38. Stocic-Grujicic S, Ramic Z, Bumbasirevic V et al (2004) Induction of experimental autoimmune encephalomyelitis in Dark Agouti rats without adjuvants. Clin Exp Immunol 136:49–55

    Article  Google Scholar 

  39. Muller DM, Pender MP, Greer JM (2000) A neuropathological analysis of experimental autoimmune encephalomyelitis with predominant brainstem and cerebellar involvement and differences between active and passive induction. Acta Neuropathol 100:174–182

    Article  CAS  PubMed  Google Scholar 

  40. Kerlero de Rosbo N, Hoffmann M, Mendel I et al (1997) Predominance of the autoimmune response to myelin oligodendrocyte glycoprotein (MOG) in multiple sclerosis: reactivity to the extracellular domain of MOG is directed against three main regions. Eur J Immunol 27:3059–3069

    Article  CAS  PubMed  Google Scholar 

  41. Croxford AL, Kurschus F, Waisman A (2011) Mouse models for multiple sclerosis: historical facts and future implications. Biochim Biophys Acta 1812:177–183

    Article  CAS  PubMed  Google Scholar 

  42. Rangachari M, Kuchroo VK (2013) Using EAE to better understand principles of immune function and autoimmune pathology. J Autoimmun 45:31–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee YK, Menezes JS, Umesaki Y, Mazmanian SK (2011) Proinflammatory T-cell responses to gut microbiota promote experimental autoimmune encephalomyelitis. Proc Natl Acad Sci U S A 108:4615–4622

    Article  CAS  PubMed  Google Scholar 

  44. Constantinescu CS, Hilliard BA (2005) Adjuvants in EAE. In: Lavi E, Constantinescu C (eds) Experimental models of multiple sclerosis. Springer, New York, pp 73–84

    Chapter  Google Scholar 

  45. Awate S, Babiuk LA, Mutwiri G (2013) Mechanisms of action of adjuvants. Front Immunol 4:114

    Article  PubMed  PubMed Central  Google Scholar 

  46. Namer IJ, Steibel J, Poulet P et al (1994) The role of Mycobacterium tuberculosis in experimental allergic encephalomyelitis. Eur Neurol 34:224–227

    Article  CAS  PubMed  Google Scholar 

  47. Moss J, Stanley SJ, Burns DL et al (1983) Activation by thiol of the latent NAD glycohydrolase and ADP-ribosyltransferase activities of Bordetella pertussis toxin (islet-activating protein). J Biol Chem 258:11879–11882

    Article  CAS  PubMed  Google Scholar 

  48. Sriram S, Steiner I (2005) Experimental autoimmune encephalomyelitis: a misleading model of multiple sclerosis. Ann Neurol 58:939–945

    Article  CAS  PubMed  Google Scholar 

  49. Ransohoff RM (2012) Animal models of multiple sclerosis: the good, the bad and the bottom line. Nat Neurosci 15:1074–1077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Behan PO, Chaudhauri A (2014) EAE is not a useful model for demyelinating disease. Mult Scler Relat Dis 3:565–574

    Article  Google Scholar 

  51. Lassmann H, Bradl M (2017) Multiple sclerosis: experimental models and reality. Acta Neuropathol 133:223–244

    Article  CAS  PubMed  Google Scholar 

  52. D’haeseleer, Cambron M, Vanopdenbosh L, De Keyser J (2011) Vascular aspects of multiple sclerosis. Lancet Neurol 10:657–666

    Article  PubMed  Google Scholar 

  53. Linden JR, Ma Y, Zhao B et al (2015) Clostridium perfinges epsilon toxin causes selective death of mature oligodendrocytes and central nervous system demyelination. mBio 6:e02513–e02514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. ’t Hart BA, Laman JD, Kap YS (2018) Merits and complexities of modeling multiple sclerosis in non-human primates: implications for drug discovery. Exp Opin Drug Discov 13:387–397

    Article  Google Scholar 

  55. Lassmann H (2010) Axonal and neuronal pathology in multiple sclerosis: what we have learnt from animal models. Exp Neurol 225:2–8

    Article  PubMed  Google Scholar 

  56. Robinson AP, Harp CT, Noronha A, Miller SD (2014) The experimental autoimmune encephalomyelitis (EAE) model of MS: utility for understanding disease pathophysiology and treatment. Handb Clin Neurol 122:173–189

    Article  PubMed  PubMed Central  Google Scholar 

  57. Mendel I, Kerlero de Rosbo N, Ben-Nun A (1995) A myelin oligodendrocyte glycoprotein peptide induces typical chronic experimental autoimmune encephalomyelitis in H-2b mice: fine specificity and T cell receptor V beta expression of encephalitogenic T cells. Eur J Immunol 25:1951–1959

    Article  CAS  PubMed  Google Scholar 

  58. Slavin A, Ewing C, Liu J et al (1998) Induction of a multiple sclerosis-like disease in mice with an immunodominant epitope of myelin oligodendrocyte glycoprotein. Autoimmunity 28:109–120

    Article  CAS  PubMed  Google Scholar 

  59. Lyons JA, Ramsbottom MJ, Trotter JL, Cross AH (2002) Identification of the encephalitogenic epitopes of CNS proteolipid protein in BALB/c mice. J Autoimmun 19:195–121

    Article  PubMed  Google Scholar 

  60. Pham H, Doerrbecker J, Ramp AA et al (2011) Experimental autoimmune encephalomyelitis (EAE) in C56BL/6 mice is not associated with astrogliosis. J Neuroimmunol 232:51–62

    Article  CAS  PubMed  Google Scholar 

  61. Dang P, Bui K, D’Souza CS, Orian JM (2015) Modelling MS: MOG-induced EAE in the NOD/Lt mouse strain. In AC La Flamme, JM Orian (eds.) Emerging and evolving topics in MS pathogenesis and treatments. Curr Top Behav Neurosci 26:143–177, Springer De

    Google Scholar 

  62. Orian JM, Keating P, Downs L et al (2015) Deletion of IL-4Rα in the BALB/c mouse is associated with altered lesion topography and susceptibility to pertussis toxin-induced EAE. Autoimmunity 48:208–221

    Article  CAS  PubMed  Google Scholar 

  63. Turner PV, Brabb T, Pekow C, Vasbinder MA (2011) Administration of substances to laboratory animals: routes of administration and factors to consider. J Am Assoc Lab Anim 50:600–613

    CAS  Google Scholar 

  64. Song HK, Hwang DY (2017) Use of C57BL/6N mice on the variety of immunological research. Lab Anim Res 33:119–123

    Article  PubMed  PubMed Central  Google Scholar 

  65. Andreev-Andrievskiy A, Popova A, Boyle R et al (2014) Mice in Bion-M 1 space mission: training and selection. PLoS One 9:e104830

    Article  PubMed  PubMed Central  Google Scholar 

  66. Berard JL, Wolak K, Fournier S, David S (2010) Characterization of relapsing-remitting and chronic forms of experimental autoimmune encephalomyelitis in C57BL/6 mice. Glia 58:434–445

    Article  PubMed  Google Scholar 

  67. Kocovski P, Dang PT, D’Souza CS et al (2018) Differential anxiety-like responses in NOD/ShiLtJ and C57BL/6J mice following experimental autoimmune encephalomyelitis induction and oral gavage. Lab Anim 52:470–478

    Article  CAS  PubMed  Google Scholar 

  68. Wolfensohn S, Hawkins P, Lilley P et al (2013) Reducing suffering in experimental autoimmune encephalomyelitis (EAE). J Pharmacol Toxicol 67:169–176

    Article  CAS  Google Scholar 

  69. Tompkins SM, Padilla J, Dal Canto MC et al (2002) De novo central nervous system processing of myelin antigen is required for the initiation of experimental autoimmune encephalomyelitis. J Immunol 168:4173–4183

    Article  CAS  PubMed  Google Scholar 

  70. Tan LJ, Kennedy MK, Miller SD (1992) Regulation of the effector stages of experimental autoimmune encephalomyelitis via neuroantigen-specific tolerance induction. II. Fine specificity of effector T cell inhibition. J Immunol 148:2748–2755

    Article  CAS  PubMed  Google Scholar 

  71. Sakai K, Zamvil SS, Mitchell DJ (1988) Characterization of a major encephalitogenic T cell epitope in SJL/J mice with synthetic oligopeptides of myelin basic protein. J Neuroimmunol 19:21–32

    Article  CAS  PubMed  Google Scholar 

  72. Amor S, Groome N, Linington C et al (1994) Identification of epitopes of myelin oligodendrocyte glycoprotein for the induction of experimental allergic encephalomyelitis in SJL and Biozzi AB/H mice. J Immunol 153:4349–4356

    Article  CAS  PubMed  Google Scholar 

  73. Tsunoda I, Kuang LQ, Theil DJ, Fujinami RS (2000) Antibody association with a novel model for primary progressive multiple sclerosis: induction of relapsing-remitting and progressive forms of EAE in H2s mouse strains. Brain Pathol 10:402–418

    Article  CAS  PubMed  Google Scholar 

  74. Greer JM, Sobel RA, Sette A (1996) Immunogenic and encephalitogenic epitope clusters of myelin proteolipid protein. J Immunol 156:371–379

    Article  CAS  PubMed  Google Scholar 

  75. Tuohy VK, Thomas DM (1995) Sequence 104–117 of myelin proteolipid protein is a cryptic encephalitogenic T cell determinant for SJL/J mice. J Neuroimmunol 56:161–170

    Article  CAS  PubMed  Google Scholar 

  76. Greer JM, Denis B, Sobel RA, Trifilieff E (2001) Thiopalmitoylation of myelin proteolipid protein epitopes enhances immunogenicity and encephalitogenicity. J Immunol 166:6907–6913

    Article  CAS  PubMed  Google Scholar 

  77. Tuohy VK, Lu Z, Sobel RA et al (1989) Identification of an encephalitogenic determinant of myelin proteolipid protein for SJL mice. J Immunol 142:1523–1527

    Article  CAS  PubMed  Google Scholar 

  78. Greer JM, Kuchroo VK, Sobel RA, Lees MB (1992) Identification and characterization of a second encephalitogenic determinant of myelin proteolipid protein (residues 178–191) for SJL mice. J Immunol 149:783–788

    Article  CAS  PubMed  Google Scholar 

  79. Fritz RB, Chou CH, McFarlin DE (1983) Induction of experimental allergic encephalomyelitis in PL/J and (SJL/J × PL/J)F1 mice by myelin basic protein and its peptides: localization of a second encephalitogenic determinant. J Immunol 130:191–194

    Article  CAS  PubMed  Google Scholar 

  80. Greer JM, Klinguer C, Trifilieff E et al (1997) Encephalitogenicity of murine, but not bovine, DM20 in SJL mice is due to a single amino acid difference in the immunodominant encephalitogenic epitope. Neurochem Res 22:541–547

    Article  CAS  PubMed  Google Scholar 

  81. Morris-Downes MM, McCormack K, Baker D et al (2002) Encephalitogenic and immunogenic potential of myelin-associated glycoprotein (MAG), oligodendrocyte-specific glycoprotein (OSP) and 20,30-cyclic nucleotide 30-phosphodiesterase (CNPase) in ABH and SJL mice. J Neuroimmunol 122:20–33

    Article  CAS  PubMed  Google Scholar 

  82. Amor S, O’Neill JK, Morris MM et al (1996) Encephalitogenic epitopes of myelin basic protein, proteolipid protein, myelin oligodendrocyte glycoprotein for experimental allergic encephalomyelitis induction in Biozzi ABH (H-2Ag7) mice share an amino acid motif. J Immunol 156:3000–3008

    Article  CAS  PubMed  Google Scholar 

  83. Smith P, Heijmans N, Ouwerling B et al (2005) Native myelin oligodendrocyte glycoprotein promotes severe chronic neurological disease and demyelination in Biozzi mice. Eur J Immunol 35:1311–1319

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank La Trobe University for research scholarships to DL Maxwell and VJT Lim and La Trobe Animal Research and Teaching Facility (LARTF) for technical support. The work was funded by private donations and grants from La Trobe Research Focus Areas and Multiple Sclerosis Research Australia (MSRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline M. Orian .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Orian, J.M., Maxwell, D.L., Lim, V.J.T. (2024). Active Induction of a Multiple Sclerosis-Like Disease in Common Laboratory Mouse Strains. In: Dworkin, S. (eds) Neurobiology. Methods in Molecular Biology, vol 2746. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3585-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3585-8_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3584-1

  • Online ISBN: 978-1-0716-3585-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics