Skip to main content

Cryosectioning and Immunohistochemistry Using Frozen Adult Murine Brain Neural Tissue

  • Protocol
  • First Online:
Neurobiology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2746))

  • 593 Accesses

Abstract

Cryopreservation and immunohistochemistry offer a comprehensive, robust, and simple methodology to investigate neural patterning and cellular function. Rapid freezing of the whole brain allows excellent preservation of neural ultrastructure and tissue architecture without destroying sensitive protein epitopes that are often compromised following standard paraffin embedding histological techniques. Here, we present a rapid and simple protocol for employing cryosectioning and subsequent immunohistochemistry in the study of adult murine brain neural tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Delcambre GH, Liu JJ, Herrington JM, Vallario K, Long MT (2016) Immunohistochemistry for the detection of neural and inflammatory cells in equine brain tissue. Peerj 4:ARTN e1601. https://doi.org/10.7717/peerj.1601

    Article  CAS  Google Scholar 

  2. Dworkin S, Auden A, Partridge DD, Daglas M, Medcalf RL, Mantamadiotis T, Georgy SR, Darido C, Jane SM, Ting SB (2017) Grainyhead-like 3 (Grhl3) deficiency in brain leads to altered locomotor activity and decreased anxiety-like behaviors in aged mice. Dev Neurobiol 77(6):775–788. https://doi.org/10.1002/dneu.22469

    Article  CAS  PubMed  Google Scholar 

  3. Juma AR, Hall NE, Wong J, Gasperoni JG, Watanabe Y, Sahota A, Damdimopoulou PE, Grommen SVH, De Groef B (2018) PLAG1 expression and target genes in the hypothalamo-pituitary system in male mice. Mol Cell Endocrinol 478:77–83. https://doi.org/10.1016/j.mce.2018.07.009

    Article  CAS  PubMed  Google Scholar 

  4. Vazquez-Fernandez E, Vos MR, Afanasyev P, Cebey L, Sevillano AM, Vidal E, Rosa I, Renault L, Ramos A, Peters PJ, Fernandez JJ, van Heel M, Young HS, Requena JR, Wille H (2016) The structural architecture of an infectious mammalian prion using electron cryomicroscopy. PLoS Pathog 12(9):ARTN e1005835. https://doi.org/10.1371/journal.ppat.1005835

    Article  CAS  Google Scholar 

  5. Dworkin S, Heath JK, deJong-Curtain TA, Hogan BM, Lieschke GJ, Malaterre J, Ramsay RG, Mantamadiotis T (2007) CREB activity modulates neural cell proliferation, midbrain-hindbrain organization and patterning in zebrafish. Dev Biol 307(1):127–141. https://doi.org/10.1016/j.ydbio.2007.04.026

    Article  CAS  PubMed  Google Scholar 

  6. Shabihkhani M, Lucey GM, Wei BW, Mareninov S, Lou JJ, Vinters HV, Singer EJ, Cloughesy TF, Yong WH (2014) The procurement, storage, and quality assurance of frozen blood and tissue biospecimens in pathology, biorepository, and biobank settings. Clin Biochem 47(4–5):258–266. https://doi.org/10.1016/j.clinbiochem.2014.01.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bayram B, Akdeniz SS, Diker N, Helvacioglu F, Erdem SR (2018) Effects of platelet-rich fibrin membrane on sciatic nerve regeneration. J Craniofac Surg 29(3):e239–e243. https://doi.org/10.1097/SCS.0000000000004256

    Article  PubMed  Google Scholar 

  8. Das G, Reuhl K, Zhou R (2013) The Golgi-Cox method. Methods Mol Biol (Clifton, NJ) 1018:313–321. https://doi.org/10.1007/978-1-62703-444-9_29

    Article  CAS  Google Scholar 

  9. Karlsson O, Berg AL, Lindstrom AK, Hanrieder J, Arnerup G, Roman E, Bergquist J, Lindquist NG, Brittebo EB, Andersson M (2012) Neonatal exposure to the cyanobacterial toxin BMAA induces changes in protein expression and neurodegeneration in adult hippocampus. Toxicol Sci 130(2):391–404. https://doi.org/10.1093/toxsci/kfs241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Dworkin S, Malaterre J, Hollande F, Darcy PK, Ramsay RG, Mantamadiotis T (2009) cAMP response element binding protein is required for mouse neural progenitor cell survival and expansion. Stem cells (Dayton, Ohio) 27(6):1347–1357. https://doi.org/10.1002/stem.56

    Article  CAS  PubMed  Google Scholar 

  11. Malaterre J, Mantamadiotis T, Dworkin S, Lightowler S, Yang Q, Ransome MI, Turnley AM, Nichols NR, Emambokus NR, Frampton J, Ramsay RG (2008) c-Myb is required for neural progenitor cell proliferation and maintenance of the neural stem cell niche in adult brain. Stem cells (Dayton, Ohio) 26(1):173–181. https://doi.org/10.1634/stemcells.2007-0293

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Dworkin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gasperoni, J., Dworkin, S. (2024). Cryosectioning and Immunohistochemistry Using Frozen Adult Murine Brain Neural Tissue. In: Dworkin, S. (eds) Neurobiology. Methods in Molecular Biology, vol 2746. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3585-8_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3585-8_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3584-1

  • Online ISBN: 978-1-0716-3585-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics