Skip to main content

Modeling Mammary Organogenesis from Biological First Principles: A Systems Biology Approach

  • Protocol
  • First Online:
Systems Biology

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2745))

  • 412 Accesses

Abstract

Stromal-epithelial interactions mediate mammary gland development and the formation and progression of breast cancer. To study these interactions in vitro, 3D models are essential. We have successfully developed novel 3D in vitro models that allow the formation of mammary gland structures closely resembling those found in vivo and that respond to the hormonal cues that regulate mammary gland morphogenesis and function. Due to their simplicity when compared to in vivo studies, and to their accessibility to visualization in real time, these models are well suited to conceptual and mathematical modeling.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Dupré J, Nicholson DJ (2018) A manifesto for a processual philosophy of biology. In: Nicholson DJ, Dupre J (eds) Everything flows: towards a processual philosophy of biology. Oxford University Press, Oxford

    Google Scholar 

  2. Mossio M, Bich L (2017) What makes biological organisation teleological? Synthese 194:1089–1114

    Article  Google Scholar 

  3. Soto AM, Longo G, Montévil M et al (2016) The biological default state of cell proliferation with variation and motility, a fundamental principle for a theory of organisms. Prog Biophys Mol Biol 122:16–23. https://doi.org/10.1016/j.pbiomolbio.2016.06.006

    Article  PubMed  PubMed Central  Google Scholar 

  4. Longo G, Montévil M, Sonnenschein C et al (2015) In search of principles for a theory of organisms. J Biosci 40:955–968. https://doi.org/10.1007/s12038-015-9574-9

    Article  PubMed  PubMed Central  Google Scholar 

  5. Sonnenschein C, Soto AM (2021) Control of cell proliferation: is the default state of cells quiescence or proliferation. Organ 5:33–42. https://doi.org/10.13133/2532-5876/17338

    Article  Google Scholar 

  6. Soto AM, Sonnenschein C (2005) Emergentism as a default: cancer as a problem of tissue organization. J Biosci 30:103–118

    Article  CAS  PubMed  Google Scholar 

  7. Miquel PA, Hwang SY (2016) From physical to biological individuation. Prog Biophys Mol Biol 122:51–57. https://doi.org/10.1016/j.pbiomolbio.2016.07.002

    Article  PubMed  Google Scholar 

  8. Montévil M, Mossio M, Pocheville A et al (2016) Theoretical principles for biology: variation. Prog Biophys Mol Biol 122:36–50. https://doi.org/10.1016/j.pbiomolbio.2016.08.005

    Article  PubMed  Google Scholar 

  9. Sonnenschein C, Soto AM (2016) Carcinogenesis explained within the context of a theory of organisms. Prog Biophys Mol Biol 122:70–76. https://doi.org/10.1016/j.pbiomolbio.2016.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Montévil M (2019) Measurement in biology is methodized by theory. Biol Philos 34:35. https://doi.org/10.1007/s10539-019-9687-x

    Article  Google Scholar 

  11. Soto AM, Longo G, Miquel PA et al (2016) Toward a theory of organisms: three founding principles in search of a useful integration. Prog Biophys Mol Biol 122:77–82. https://doi.org/10.1016/j.pbiomolbio.2016.07.006

    Article  PubMed  PubMed Central  Google Scholar 

  12. Howard BA, Gusterson BA (2000) Human breast development. J Mammary Gland Biol Neoplasia 5:119–137

    Article  CAS  PubMed  Google Scholar 

  13. Masso-Welch PA, Darcy KM, Stangle-Castor NC et al (2000) A developmental atlas of rat mammary gland histology. J Mammary Gland Biol Neoplasia 5:165–185

    Article  CAS  PubMed  Google Scholar 

  14. Richert MM, Schwertfeger KL, Ryder JW et al (2000) An atlas of mouse mammary gland development. J Mammary Gland Biol Neoplasia 5:227–241

    Article  CAS  PubMed  Google Scholar 

  15. Soto AM, Brisken C, Schaeberle CM et al (2013) Does cancer start in the womb? Altered mammary gland development and predisposition to breast cancer due to in utero exposure to endocrine disruptors. J Mammary Gland Biol Neoplasia 18:199–208

    Article  PubMed  PubMed Central  Google Scholar 

  16. Zinser G, Packman K, Welsh J (2002) Vitamin D(3) receptor ablation alters mammary gland morphogenesis. Development 129:3067–3076

    Article  CAS  PubMed  Google Scholar 

  17. Soto AM, Sonnenschein C (2011) The tissue organization field theory of cancer: a testable replacement for the somatic mutation theory. BioEssays 33:332–340

    Article  PubMed  PubMed Central  Google Scholar 

  18. Sonnenschein C, Soto AM (2020) Over a century of cancer research: inconvenient truths and promising leads. PLoS Biol 18:e3000670

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bich L, Mossio M, Soto AM (2020) Glycemia regulation: from feedback loops to organizational closure. Front Physiol 11:69. https://doi.org/10.3389/fphys.2020.00069

    Article  PubMed  PubMed Central  Google Scholar 

  20. Montévil M, Speroni L, Sonnenschein C et al (2016) Modeling mammary organogenesis from biological first principles: cells and their physical constraints. Prog Biophys Mol Biol 122:58–69. https://doi.org/10.1016/j.pbiomolbio.2016.08.004

    Article  PubMed  PubMed Central  Google Scholar 

  21. Turing AM (1950) I. Computing machinery and intelligence. Mind LIX:433–460

    Article  Google Scholar 

  22. Krause S, Maffini MV, Soto AM et al (2008) A novel 3D in vitro culture model to study stromal-epithelial interactions in the mammary gland. Tissue Eng 14:261–271

    Article  CAS  Google Scholar 

  23. Krause S, Jondeau-Cabaton A, Dhimolea E et al (2012) Dual regulation of breast tubulogenesis using extracellular matrix composition and stromal cells. Tissue Eng Part A 18:520–532

    Article  CAS  PubMed  Google Scholar 

  24. Dhimolea E, Maffini MV, Soto AM et al (2010) The role of collagen reorganization on mammary epithelial morphogenesis in a 3D culture model. Biomaterials 31:3622–3630

    Article  CAS  PubMed  Google Scholar 

  25. Speroni L, Whitt GS, Xylas J et al (2014) Hormonal regulation of epithelial organization in a 3D breast tissue culture model. Tissue Eng Part C Methods 20:42–51

    Article  CAS  PubMed  Google Scholar 

  26. Barnes C, Speroni L, Quinn K et al (2014) From single cells to tissues: interactions between the matrix and human breast cells in real time. PLoS One 9:e93325

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hasan N, Zhang Y, Georgakoudi I et al (2021) Matrix composition modulates vitamin D3's effects on 3D collagen fiber organization by MCF10A cells. Tissue Eng Part A. https://doi.org/10.1089/ten.TEA.2020.0371

  28. Hasan N, Sonnenschein C, Soto AM (2019) Vitamin D3 constrains estrogen's effects and influences mammary epithelial organization in 3D cultures. Sci Rep 9:7423. https://doi.org/10.1038/s41598-019-43308-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zinser GM, Welsh J (2004) Accelerated mammary gland development during pregnancy and delayed postlactational involution in vitamin D3 receptor null mice. Mol Endocrinol 18:2208–2223

    Article  CAS  PubMed  Google Scholar 

  30. Sheng L, Turner AG, Barratt K et al (2019) Mammary-specific ablation of Cyp24a1 inhibits development, reduces proliferation and increases sensitivity to vitamin D. J Steroid Biochem Mol Biol 189:240–247. https://doi.org/10.1016/j.jsbmb.2019.01.005

    Article  CAS  PubMed  Google Scholar 

  31. Paulose T, Montévil M, Speroni L et al (2016) SAMA: a method for 3D morphological analysis. PLoS One 11:e0153022. https://doi.org/10.1371/journal.pone.0153022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ana M. Soto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Schaeberle, C.M., Bouffard, V.A., Sonnenschein, C., Soto, A.M. (2024). Modeling Mammary Organogenesis from Biological First Principles: A Systems Biology Approach. In: Bizzarri, M. (eds) Systems Biology. Methods in Molecular Biology, vol 2745. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3577-3_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3577-3_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3576-6

  • Online ISBN: 978-1-0716-3577-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics