Skip to main content

Dissecting the Multiple Functions of the Polo-Like Kinase 1 in the C. elegans Zygote

  • Protocol
  • First Online:
Cell Cycle Control

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2740))

  • 355 Accesses

Abstract

Plk1 (polo-like kinase 1) is an evolutionarily conserved serine/threonine kinase instrumental for mitotic entry and progression. Beyond these canonical functions, Plk1 also regulates cell polarization and cell fate during asymmetric cell divisions in C. elegans and D. melanogaster. Plk1 contains a specialized phosphoserine–threonine binding domain, the polo-box domain (PBD), which localizes and concentrates the kinase at its various sites of action within the cell in space and time. Here we present protocols to express and purify the C. elegans Plk1 kinase along with biochemical and phosphoproteomic approaches to interrogate the PBD interactome and to dissect Plk1 substrate interactions. These protocols are most suitable for the identification of Plk1 targets in C. elegans embryos but can be easily adapted to identify and study Plk1 substrates from any source.”

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Archambault V, Glover DM (2009) Polo-like kinases: conservation and divergence in their functions and regulation. Nat Rev Mol Cell Biol 10:265–275

    Article  CAS  PubMed  Google Scholar 

  2. Zitouni S, Nabais C, Jana SC et al (2014) Polo-like kinases: structural variations lead to multiple functions. Nat Rev Mol Cell Biol 15:433–452

    Article  CAS  PubMed  Google Scholar 

  3. Combes G, Alharbi I, Braga LG, Elowe S (2017) Playing polo during mitosis: PLK1 takes the lead. Oncogene 36:4819–4827

    Article  CAS  PubMed  Google Scholar 

  4. Pintard L, Archambault V (2018) A unified view of spatio-temporal control of mitotic entry: polo kinase as the key. Open Biol 8:180114. https://doi.org/10.1098/rsob.180114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Cheng KY, Lowe ED, Sinclair J et al (2003) The crystal structure of the human polo-like kinase-1 polo box domain and its phospho-peptide complex. EMBO J 22:5757–5768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Elia AE, Rellos P, Haire LF et al (2003) The molecular basis for phosphodependent substrate targeting and regulation of Plks by the polo-box domain. Cell 115:83–95

    Article  CAS  PubMed  Google Scholar 

  7. Elia AE, Cantley LC, Yaffe MB (2003) Proteomic screen finds pSer/pThr-binding domain localizing Plk1 to mitotic substrates. Science 299:1228–1231

    Article  CAS  PubMed  Google Scholar 

  8. Nigg EA (2001) Mitotic kinases as regulators of cell division and its checkpoints. Nat Rev Mol Cell Biol 2:21–32

    Article  CAS  PubMed  Google Scholar 

  9. Elowe S, Hümmer S, Uldschmid A et al (2007) Tension-sensitive Plk1 phosphorylation on BubR1 regulates the stability of kinetochore microtubule interactions. Genes Dev 21:2205–2219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Qi W, Tang Z, Yu H (2006) Phosphorylation- and polo-box-dependent binding of Plk1 to Bub1 is required for the kinetochore localization of Plk1. Mol Biol Cell 17:3705–3716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Chan EH, Santamaria A, Sillje HH, Nigg EA (2008) Plk1 regulates mitotic Aurora A function through betaTrCP-dependent degradation of hBora. Chromosoma 117:457–469

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nakajima H, Toyoshima-Morimoto F, Taniguchi E, Nishida E (2003) Identification of a consensus motif for Plk (Polo-like kinase) phosphorylation reveals Myt1 as a Plk1 substrate. J Biol Chem 278:25277–25280

    Article  CAS  PubMed  Google Scholar 

  13. Kettenbach AN, Schweppe DK, Faherty BK et al (2011) Quantitative phosphoproteomics identifies substrates and functional modules of Aurora and Polo-like kinase activities in mitotic cells. Sci Signal 4:rs5

    Article  CAS  PubMed  Google Scholar 

  14. Neef R, Preisinger C, Sutcliffe J et al (2003) Phosphorylation of mitotic kinesin-like protein 2 by polo-like kinase 1 is required for cytokinesis. J Cell Biol 162:863–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Kang YH, Park JE, Yu LR et al (2006) Self-regulated Plk1 recruitment to kinetochores by the Plk1-PBIP1 interaction is critical for proper chromosome segregation. Mol Cell 24:409–422

    Article  CAS  PubMed  Google Scholar 

  16. Park JE, Soung NK, Johmura Y et al (2010) Polo-box domain: a versatile mediator of polo-like kinase function. Cell Mol Life Sci 67:1957–1970

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Saurin AT (2018) Kinase and phosphatase cross-talk at the kinetochore. Front Cell Dev Biol 6:62

    Article  PubMed  PubMed Central  Google Scholar 

  18. Noatynska A, Tavernier N, Gotta M, Pintard L (2013) Coordinating cell polarity and cell cycle progression: what can we learn from flies and worms? Open Biol 3:130083

    Article  PubMed  PubMed Central  Google Scholar 

  19. Kim AJ, Griffin EE (2020) PLK-1 regulation of asymmetric cell division in the Early C. elegans embryo. Front cell. Dev Biol 8:632253

    Google Scholar 

  20. Taylor SJP, Bel Borja L, Soubigou F et al (2023) BUB-1 and CENP-C recruit PLK-1 to control chromosome alignment and segregation during meiosis I in C. elegans oocytes. Elife 12:e84057

    Article  PubMed  PubMed Central  Google Scholar 

  21. Endicott JA, Noble ME, Johnson LN (2012) The structural basis for control of eukaryotic protein kinases. Annu Rev Biochem 81:587–613

    Article  CAS  PubMed  Google Scholar 

  22. Macurek L, Lindqvist A, Lim D et al (2008) Polo-like kinase-1 is activated by aurora A to promote checkpoint recovery. Nature 455:119–123

    Article  CAS  PubMed  Google Scholar 

  23. Tavernier N, Noatynska A, Panbianco C et al (2015) Cdk1 phosphorylates SPAT-1/Bora to trigger PLK-1 activation and drive mitotic entry in C. elegans embryos. J Cell Biol 208:661–669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lowery DM, Clauser KR, Hjerrild M et al (2007) Proteomic screen defines the polo-box domain interactome and identifies Rock2 as a Plk1 substrate. EMBO J 26:2262–2273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Nkombo Nkoula S, Velez-Aguilera G, Ossareh-Nazari B, Van Hove L, Ayuso C, Legros V, Chevreux G, Thomas L, Seydoux G, Askjaer P, Pintard L (2023) Mechanisms of nuclear pore complex disassembly by the mitotic Polo-like kinase 1 (PLK-1) in C. elegans embryos. Sci Adv 9:eadf7826

    Google Scholar 

  26. Stiernagle T (2006) Maintenance of C. elegans. WormBook 1–11

    Google Scholar 

  27. Singh P, Pesenti ME, Maffini SC, et al (2021) BUB1 and CENP-U, primed by CDK1, are the main PLK1 kinetochore receptors in mitosis. Mol Cell 81:67–87.e9

    Google Scholar 

  28. Wu Y, Li Q, Chen XZ (2007) Detecting protein-protein interactions by far western blotting. Nat Protoc 2:3278–3284

    Article  CAS  PubMed  Google Scholar 

  29. Martino L, Morchoisne-Bolhy S, Cheerambathur DK et al (2017) Channel nucleoporins recruit PLK-1 to nuclear pore complexes to direct nuclear envelope breakdown in C. elegans. Dev Cell 43:157–171.e7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Velez-Aguilera G, Nkombo Nkoula S, Ossareh-Nazari B et al (2020) PLK-1 promotes the merger of the parental genome into a single nucleus by triggering lamina disassembly. elife 9:e59510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Brooks KK, Liang B, Watts JL (2009) The influence of bacterial diet on fat storage in C. elegans. PLoS One 4:e7545

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank P. Moussounda for media preparation and Véronique Legros and Guillaume Chevreux, from the Proteomic platform, for phosphopeptide purification and tandem mass spectrometry analysis. We thank R. Karess for critical reading of the manuscript. We thank all members of the team for stimulating discussions. Work in LP laboratory is supported by grants from Agence Nationale pour la Recherche (ANR), France, ANR-22-CE13-0022 (LP), La Ligue Nationale Contre le Cancer, Equipe Labellisée, France, and Idex Université Paris Cité, ANR-18-IDEX-0001. Griselda Velez-Aguilera is supported by a postdoctoral fellowship from “Secretaría de Educación, Ciencia, Tecnología e Innovación de la Ciudad de México,” CMSECTEI/201/2022.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lionel Pintard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Velez-Aguilera, G., Ossareh-Nazari, B., Pintard, L. (2024). Dissecting the Multiple Functions of the Polo-Like Kinase 1 in the C. elegans Zygote. In: Castro, A., Lacroix, B. (eds) Cell Cycle Control. Methods in Molecular Biology, vol 2740. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3557-5_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3557-5_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3556-8

  • Online ISBN: 978-1-0716-3557-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics