Skip to main content

Bacteriophage Production in Compliance with Regulatory Requirements

  • Protocol
  • First Online:
Bacteriophage Therapy

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2734))

Abstract

In this chapter, we discuss production requirements for therapeutic bacteriophage preparations. We review the current regulatory expectancies and focus on pragmatic production processes, implementing relevant controls to ensure the quality, safety, and efficacy of the final products. The information disclosed in this chapter can also serve as a basis for discussions with competent authorities regarding the implementation of expedited bacteriophage product development and licensing pathways, taking into account some peculiarities of bacteriophages (as compared to conventional medicines), such as their specificity for, and co-evolution with, their bacterial hosts. To maximize the potential of bacteriophages as natural controllers of bacterial populations, the implemented regulatory frameworks and manufacturing processes should not only cater to defined bacteriophage products. But, they should also facilitate personalized approaches in which bacteriophages are selected ad hoc and even trained to target the patient’s infecting bacterial strain(s), whether or not in combination with other antimicrobials such as antibiotics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Cooper CJ, Khan Mirzaei M, Nilsson AS (2016) Adapting drug approval pathways for bacteriophage-based therapeutics. Front Microbiol 7:1209

    PubMed Central  Google Scholar 

  2. Pirnay JP, Ferry T, Resch G (2022) Recent progress toward the implementation of phage therapy in Western medicine. FEMS Microbiol Rev 46(1):fuab040

    CAS  PubMed  Google Scholar 

  3. Hall AR, De Vos D, Friman VP et al (2012) Effects of sequential and simultaneous applications of bacteriophages on populations of Pseudomonas aeruginosa in vitro and in wax moth larvae. Appl Environ Microbiol 78:5646–5652

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Schooley RT, Biswas B, Gill JJ et al (2017) Development and use of personalized bacteriophage-based therapeutic cocktails to treat a patient with a disseminated resistant Acinetobacter baumannii infection. Antimicrob Agents Chemother 61(10):e00954–e00917

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Van Nieuwenhuyse B, Van der Linden D, Chatzis O et al (2022) Bacteriophage-antibiotic combination therapy against extensively drug-resistant Pseudomonas aeruginosa infection to allow liver transplantation in a toddler. Nat Commun 13(1):5725

    PubMed  PubMed Central  Google Scholar 

  6. Gill JJ, Hyman P (2010) Phage choice, isolation, and preparation for phage therapy. Curr Pharm Biotechnol 11(1):2–14

    CAS  PubMed  Google Scholar 

  7. Glonti T, Pirnay JP (2022) In vitro techniques and measurements of phage characteristics that are important for phage therapy success. Viruses 14(7):1490

    PubMed  PubMed Central  Google Scholar 

  8. Verbeken G, Pirnay JP, Lavigne R et al (2014) Call for a dedicated European legal framework for bacteriophage therapy. Arch Immunol Ther Exp 62(2):117–129

    Google Scholar 

  9. Carlton RM (1999) Phage therapy: past history and future prospects. Arch Immunol Ther Exp 47(5):267–274

    CAS  Google Scholar 

  10. Egido JE, Costa AR, Aparicio-Maldonado C et al (2022) Mechanisms and clinical importance of bacteriophage resistance. FEMS Microbiol Rev 46(1):fuab048

    CAS  PubMed  Google Scholar 

  11. Pirnay JP, De Vos D, Verbeken G et al (2011) The phage therapy paradigm: prĂªt-Ă -porter or sur-mesure? Pharm Res 28(4):934–937

    CAS  PubMed  Google Scholar 

  12. Pirnay JP, Verbeken G, Rose T et al (2012) Introducing yesterday’s phage therapy in today’s medicine. Futur Virol 7(4):379–390

    CAS  Google Scholar 

  13. Mattey M, Spencer J (2008) Bacteriophage therapy – cooked goose or phoenix rising? Curr Opin Biotechnol 19(6):608–612

    CAS  PubMed  Google Scholar 

  14. Wouters OJ, McKee M, Luyten J (2020) Estimated research and development investment needed to bring a new medicine to market, 2009–2018. JAMA 323(9):844–853

    PubMed  PubMed Central  Google Scholar 

  15. Jault P, Leclerc T, Jennes S et al (2019) Efficacy and tolerability of a cocktail of bacteriophages to treat burn wounds infected by Pseudomonas aeruginosa (PhagoBurn): a randomised, controlled, double-blind phase 1/2 trial. Lancet Infect Dis 19(1):35–45

    PubMed  Google Scholar 

  16. Servick K (2016) Beleaguered phage therapy trial presses on. Science 352:1506

    CAS  PubMed  Google Scholar 

  17. Merabishvili M, De Vos D, Verbeken G et al (2012) Selection and characterization of a candidate therapeutic that lyses the Escherichia coli O104:H4 strain from the 2011 outbreak in Germany. PLoS One 7:e52709

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Henein A (2013) What are the limitations on the wider therapeutic use of phage? Bacteriophage 3(2):e24872

    PubMed  PubMed Central  Google Scholar 

  19. Verbeken G, Pirnay JP, De Vos D et al (2012) Optimizing the European regulatory framework for sustainable bacteriophage therapy in human medicine. Arch Immunol Ther Exp 60:161–172

    Google Scholar 

  20. Fauconnier A (2017) Regulating phage therapy: the biological master file concept could help to overcome regulatory challenge of personalized medicines. EMBO Rep 18(2):198–200

    CAS  PubMed  PubMed Central  Google Scholar 

  21. World Medical Association (2013) Declaration of Helsinki – ethical principles for medical research involving human subjects. http://www.wma.net/en/30publications/10policies/b3/. Accessed 25 Nov 2016

  22. McCallin S, Sacher JC, Zheng J et al (2019) Current state of compassionate phage therapy. Viruses 11(4):343

    PubMed  PubMed Central  Google Scholar 

  23. Miedzybrodzki R, Borysowski J, Weber-Dabrowska B et al (2012) Clinical aspects of phage therapy. Adv Virus Res 83:73–121

    CAS  PubMed  Google Scholar 

  24. Pirnay JP, Verbeken G, Ceyssens PJ et al (2018) The magistral phage. Viruses 10(2):64

    PubMed  PubMed Central  Google Scholar 

  25. Verbeken G, Pirnay JP (2022) European regulatory aspects of phage therapy: magistral phage preparations. Curr Opin Virol 52:24–29

    PubMed  Google Scholar 

  26. Sensebé L, Gadelorge M, Fleury-Cappellesso S (2013) Production of mesenchymal stromal/stem cells according to good manufacturing practices: a review. Stem Cell Res Ther 4(3):66

    PubMed  PubMed Central  Google Scholar 

  27. Verheust C, Pauwels K, Helinski D et al (2010) Contained use of bacteriophages: risk assessment and biosafety recommendations. Appl Biosaf 15(1):32–44

    Google Scholar 

  28. Nagel TE, Chan BK, De Vos D et al (2016) The developing world urgently needs phages to combat pathogenic bacteria. Front Microbiol 7:882

    PubMed  PubMed Central  Google Scholar 

  29. Bourdin G, Schmitt B, Marvin Guy L et al (2014) Amplification and purification of T4-like Escherichia coli phages for phage therapy: from laboratory to pilot scale. Appl Environ Microbiol 80(4):1469–1476

    PubMed  PubMed Central  Google Scholar 

  30. Weber-Dąbrowska B, Jończyk-Matysiak E, Żaczek M et al (2016) Bacteriophage procurement for therapeutic purposes. Front Microbiol 7:1177

    PubMed  PubMed Central  Google Scholar 

  31. Speck P, Smithyman A (2016) Safety and efficacy of phage therapy via the intravenous route. FEMS Microbiol Lett 363(3):fnv242

    Google Scholar 

  32. Vieu J (1961) IntĂ©rĂªt des bacteriophages dans le traitement de staphylococcies. Vie Med 42:823–829

    CAS  PubMed  Google Scholar 

  33. Montclos H (2002) Les bactériophages thérapeutique: de l’empirisme à la biologie moléculaire. Pyrexie 6:77–80

    Google Scholar 

  34. Merabishvili M, Pirnay JP, Verbeken G et al (2009) Quality-controlled small-scale production of a well-defined bacteriophage cocktail for use in human clinical trials. PLoS One 4(3):e4944

    PubMed  PubMed Central  Google Scholar 

  35. Sauve L (1936) Le bactériophage en chirurgie. La Médecine 17:49–54

    Google Scholar 

  36. Pirnay JP (2020) Phage therapy in the year 2035. Front Microbiol 11:1171

    PubMed  PubMed Central  Google Scholar 

  37. Jończyk-Matysiak E, Kłak M, Weber-Dąbrowska B et al (2014) Possible use of bacteriophages active against Bacillus anthracis and other B. cereus group members in the face of a bioterrorism threat. Biomed Res Int 2014:735413

    PubMed  PubMed Central  Google Scholar 

  38. Amgarten D, Braga LPP, da Silva AM et al (2018) MARVEL, a tool for prediction of bacteriophage sequences in metagenomic bins. Front Genet 9:304

    PubMed Central  Google Scholar 

  39. Taylor PW, Sommer AP (2005) Towards rational treatment of bacterial infections during extended space travel. Int J Antimicrob Agents 26(3):183–187

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Abedon ST, Kuhl SJ, Blasdel BG et al (2011) Phage treatment of human infections. Bacteriophage 1(2):66–85

    PubMed  PubMed Central  Google Scholar 

  41. Uhr JW, Dancis J, Franklin EC et al (1962) The antibody response to bacteriophage phi-X 174 in newborn premature infants. J Clin Invest 41:1509–1513

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Food and Drug Administration Center for Drug Evaluation and Research (1987) Guideline on validation of the limulus amebocyte lysate test as an end-product endotoxin test for human and animal parenteral drugs, biological products, and medical devices. FDA Center for Drug Evaluation and Research, Rockville

    Google Scholar 

  43. Pirnay JP, Blasdel BG, Bretaudeau L et al (2015) Quality and safety requirements for sustainable phage therapy products. Pharm Res 32(7):2173–2179

    CAS  PubMed  PubMed Central  Google Scholar 

  44. OECD Best Practice Guidelines for Biological Resource Centers (2007) Quality management, biosecurity, building capacity, preservation of biological resources, data management. Secretary-General of the OECD, Paris

    Google Scholar 

  45. Lang AS, Zhaxybayeva O, Beatty JT (2012) Gene transfer agents: phage-like elements of genetic exchange. Nat Rev Microbiol 10:472–482

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Christie GE, Dokland T (2012) Pirates of the caudovirales. Virology 434:210–221

    CAS  PubMed  Google Scholar 

  47. Burlage RS, Atlas R, Stahl D et al (1998) Techniques in microbial ecology. Oxford University Press, New York

    Google Scholar 

  48. GalĂ¡n JC, Tato M, Baquero MR et al (2004) Fosfomycin and rifampin disk diffusion tests for detection of Escherichia coli mutator strains. J Clin Microbiol 42:4310–4312

    PubMed  PubMed Central  Google Scholar 

  49. Merabishvili M, Verhelst R, Glonti T et al (2007) Digitized fluorescent RFLP analysis (fRFLP) as a universal method for comparing genomes of culturable dsDNA viruses: application to bacteriophages. Res Microbiol 158:572–581

    CAS  PubMed  Google Scholar 

  50. Matilla MA, Fang X, Salmond GP (2014) Vulna like viruses are environmentally common agents of horizontal gene transfer in pathogens and biocontrol bacteria. ISME J 8:2143–2147

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Petty NK, Foulds IJ, Pradel E et al (2006) A generalized transducing phage (φIF3) for the genomically sequenced Serratia marcescens strain Db11: a tool for functional genomics of an opportunistic human pathogen. Microbiology 152:1701–1708

    CAS  PubMed  Google Scholar 

  52. Kutter E, Sulakvelidze A (2005) Bacteriophages: biology and application. CRC Press, Boca Raton

    Google Scholar 

  53. Adams MH (1959) Bacteriophages. Interscience Publishers, New York

    Google Scholar 

  54. Appelmans R (1921) Le dosage du bactériophage. Compt Rend Soc Biol 85:1098

    Google Scholar 

  55. Ministry of Health of the USSR (1986) Guidelines for production of liquid staphylococcal phage preparation for injections. pp 29–86 (in Russian)

    Google Scholar 

  56. Parracho HMRT, Burrowes BH, Enright MC et al (2012) The role of regulated clinical trials in the development of bacteriophage therapeutics. J Mol Genet Med 6:279–286

    CAS  PubMed  PubMed Central  Google Scholar 

  57. McCallin S, Alam Sarker S, Barretto C et al (2013) Safety analysis of a Russian phage cocktail: from metagenomic analysis to oral application in healthy human subjects. Virology 443(2):187–196

    CAS  PubMed  Google Scholar 

  58. Krylov V, Shaburova O, Pleteneva E et al (2015) Selection of phages and conditions for the safe phage therapy against Pseudomonas aeruginosa infections. Virol Sin 30(1):33–44

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Krylov V, Shaburova O, Krylov S et al (2013) A genetic approach to the development of new therapeutic phages to fight Pseudomonas aeruginosa in wound infections. Viruses 5:15–53

    Google Scholar 

  60. Edgar R, Friedman N, Molshanski-Mor S et al (2012) Reversing bacterial resistance to antibiotics by phage-mediated delivery of dominant sensitive genes. Appl Environ Microbiol 78:744–751

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Chung IY, Sim N, Cho YH (2012) Antibacterial efficacy of temperate phage-mediated inhibition of bacterial group motilities. Antimicrob Agents Chemother 56:5612–5617

    CAS  PubMed  PubMed Central  Google Scholar 

  62. Prudhomme M, Attaiech L, Sanchez G et al (2006) Antibiotic stress induces genetic transformability in the human pathogen Streptococcus pneumoniae. Science 313:89–92

    CAS  PubMed  Google Scholar 

  63. State Regulation Agency of Medical Activities, Ministry of Labour, Health and Social Affairs of Georgia Staphylococcal Bacteriophage (2011) Registration Certificate of Pharmaceutical Product NR-004895, N02-132/o order of 31st of March, 2011

    Google Scholar 

  64. Fish R, Kutter E, Wheat G et al (2016) Bacteriophage treatment of intransigent diabetic toe ulcers: a case series. J Wound Care 25(Suppl 7):S27–S33

    Google Scholar 

  65. Keogh BP, Pettingill G (1966) Long-term storage of bacteriophages of lactic streptococci. Appl Microbiol 14:421–424

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Lobocka MB, Glowacka A, Golec P (2018) Methods for bacteriophage preservation. Methods Mol Biol 1693:219–230

    CAS  PubMed  Google Scholar 

  67. Malik DJ, Sokolov IJ, Vinner GK et al (2017) Formulation, stabilisation and encapsulation of bacteriophage for phage therapy. Adv Colloid Interf Sci 249:100–133

    CAS  Google Scholar 

  68. Malik DJ (2021) Bacteriophage encapsulation using spray drying for phage therapy. Curr Issues Mol Biol 40:303–316

    PubMed  Google Scholar 

  69. Tabare E, Glonti T, Cochez C et al (2021) Design of experiment approach to optimize spray-dried powders containing Pseudomonas aeruginosa Podoviridae and Myoviridae bacteriophages. Viruses 13(10):1926

    CAS  PubMed  PubMed Central  Google Scholar 

  70. Vandenheuvel D, Singh A, Vandersteegen K et al (2013) Feasibility of spray drying bacteriophages into respirable powders to combat pulmonary bacterial infections. Eur J Pharm Biopharm 84(3):578–582

    CAS  Google Scholar 

  71. Chang RY, Wong J, Mathai A et al (2017) Production of highly stable spray dried phage formulations for treatment of Pseudomonas aeruginosa lung infection. Eur J Pharm Biopharm 121:1–13

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Leung SSY, Parumasivam T, Nguyen A et al (2018b) Effect of storage temperature on the stability of spray dried bacteriophage powders. Eur J Pharm Biopharm 127:213–222

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Liang L, Carrigy NB, Kariuki S et al (2020) Development of a lyophilization process for campylobacter bacteriophage storage and transport. Microorganisms 8:282

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Merabishvili M, Vervaet C, Pirnay JP et al (2013) Stability of Staphylococcus aureus phage ISP after freeze-drying (lyophilization). PLoS One 8:e68797

    CAS  PubMed  PubMed Central  Google Scholar 

  75. Duyvejonck H, Merabishvili M, Pirnay JP et al (2019) Development of a qPCR platform for quantification of the five bacteriophages within bacteriophage cocktail 2 (BFC2). Sci Rep 9:13893

    PubMed Central  Google Scholar 

  76. Cinquerrui S, Mancuso F, Vladisavljevic GT et al (2018) Nanoencapsulation of bacteriophages in liposomes prepared using microfluidic hydrodynamic flow focusing. Front Microbiol 9:2172

    PubMed  PubMed Central  Google Scholar 

  77. Leung SSY, Morales S, Britton W et al (2018) Microfluidic-assisted bacteriophage encapsulation into liposomes. Int J Pharm 545:176–182

    CAS  Google Scholar 

  78. El Haddad L, Lemay MJ, Khalil GE et al (2018) Microencapsulation of a Staphylococcus phage for concentration and long-term storage. Food Microbiol 76:304–309

    PubMed  Google Scholar 

  79. Abdelsattar AS, Abdelrahman F, Dawoud A et al (2019) Encapsulation of E. coli phage ZCEC5 in chitosan-alginate beads as a delivery system in phage therapy. AMB Express 9:87

    PubMed Central  Google Scholar 

  80. Richter L, Ksiezarczyk K, Paszkowska K et al (2021) Adsorption of bacteriophages on polypropylene labware affects the reproducibility of phage research. Sci Rep 11:7387

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-Paul Pirnay .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Pirnay, JP., Merabishvili, M., De Vos, D., Verbeken, G. (2024). Bacteriophage Production in Compliance with Regulatory Requirements. In: Azeredo, J., Sillankorva, S. (eds) Bacteriophage Therapy. Methods in Molecular Biology, vol 2734. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3523-0_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3523-0_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3522-3

  • Online ISBN: 978-1-0716-3523-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics