Skip to main content

Preparation of Uniformly Oriented Inverted Inner (Cytoplasmic) Membrane Vesicles from Gram-Negative Bacterial Cells

  • Protocol
  • First Online:
Bacterial Secretion Systems

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2715))

  • 997 Accesses

Abstract

The complex double-membrane organization of the envelope in Gram-negative bacteria places unique biosynthetic and topological constraints that can affect translocation of lipids and proteins synthesized on cytoplasm facing leaflet of cytoplasmic (inner) membrane (IM), across IM and between IM and outer membrane (OM). Uniformly oriented inside-out (ISO) vesicles became functional requisite for many biochemical reconstitution functional assays, vectorial proteomics, and vectorial lipidomics. Due to these demands, it is necessary to develop simple and reliable approaches for preparation of uniformly oriented IM membrane vesicles and validation of their sidedness. The uniformly ISO oriented membrane vesicles which have the cytoplasmic face of the membrane on the outside and the periplasmic side facing the sealed lumen can be obtained following intact cell disruption by a single passage through a French pressure cell (French press) at desired total pressure. Although high-pressure lysis leads to the formation of mostly inverted membrane vesicles (designated and abbreviated usually as ISO vesicles, everted or inverted membrane vesicles (IMVs)), inconclusive results are quite common. This uncertainty is due mainly by applying a different pressures, using either intact cells or spheroplasts and presence or absence of sucrose during rupture procedure. Many E. coli envelope fractionation techniques result in heterogeneity among isolated IM membrane vesicles. In part, this is due to difficulties in simple validation of sidedness of oriented membrane preparations of unknown sidedness. The sidedness of various preparations of membrane vesicles can be inferred from the orientation of residing uniformly oriented transmembrane protein. We outline the method in which the orientation of membrane vesicles can be verified by mapping of uniform or mixed topologies of essential protein E. coli protein leader peptidase (LepB) by advanced SCAM™. Although the protocol discussed in this chapter has been developed using Escherichia coli and Yersinia pseudotuberculosis, it can be directly adapted to other Gram-negative bacteria including pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Troman L, Collinson I (2021) Pushing the envelope: the mysterious journey through the bacterial secretory machinery, and beyond. Front Microbiol 12:782900. https://doi.org/10.3389/fmicb.2021.782900

    Article  PubMed  PubMed Central  Google Scholar 

  2. Thoma J, Burmann BM (2022) Architects of their own environment: how membrane proteins shape the Gram-negative cell envelope. Adv Protein Chem Struct Biol 128:1–34. https://doi.org/10.1016/bs.apcsb.2021.10.001

    Article  CAS  PubMed  Google Scholar 

  3. Bogdanov M, Pyrshev K, Yesylevskyy S et al (2020) Phospholipid distribution in the cytoplasmic membrane of Gram-negative bacteria is highly asymmetric, dynamic, and cell shape-dependent. Sci Adv 6:eaaz6333. https://doi.org/10.1126/sciadv.aaz6333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Guest RL, Rutherford ST, Silhavy TJ (2021) Border control: regulating LPS biogenesis. Trends Microbiol 29:334–345. https://doi.org/10.1016/j.tim.2020.09.008

    Article  CAS  PubMed  Google Scholar 

  5. Giacometti SI, MacRae MR, Dancel-Manning K, Bhabha G, Ekiert DC (2022) Lipid transport across bacterial membranes. Annu Rev Cell Dev Biol 38:125–153. https://doi.org/10.1146/annurev-cellbio-120420-022914

    Article  CAS  PubMed  Google Scholar 

  6. Grabowicz M (2019) Lipoproteins and their trafficking to the outer membrane. EcoSal Plus 8. https://doi.org/10.1128/ecosalplus.ESP-0038-2018

  7. Yeow J, Chng SS (2022) Of zones, bridges and chaperones – phospholipid transport in bacterial outer membrane assembly and homeostasis. Microbiology 168. https://doi.org/10.1099/mic.0.001177

  8. Muller M, Blobel G (1984) In vitro translocation of bacterial proteins across the plasma membrane of Escherichia coli. Proc Natl Acad Sci U S A 81:7421–7425. https://doi.org/10.1073/pnas.81.23.7421

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Muller M, Fisher RP, Rienhofer-Schweer A, Hoffschulte HK (1987) DCCD inhibits protein translocation into plasma membrane vesicles from Escherichia coli at two different steps. EMBO J 6:3855–3861. https://doi.org/10.1002/j.1460-2075.1987.tb02723.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Bogdanov M, Dowhan W (1998) Phospholipid-assisted protein folding: phosphatidylethanolamine is required at a late step of the conformational maturation of the polytopic membrane protein lactose permease. EMBO J 17:5255–5264. https://doi.org/10.1093/emboj/17.18.5255

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Rhoads DB, Tai PC, Davis BD (1984) Energy-requiring translocation of the OmpA protein and alkaline phosphatase of Escherichia coli into inner membrane vesicles. J Bacteriol 159:63–70. https://doi.org/10.1128/jb.159.1.63-70.1984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Kuruma Y, Nishiyama K, Shimizu Y, Muller M, Ueda T (2005) Development of a minimal cell-free translation system for the synthesis of presecretory and integral membrane proteins. Biotechnol Prog 21:1243–1251. https://doi.org/10.1021/bp049553u

    Article  CAS  PubMed  Google Scholar 

  13. Mao C, Cheadle CE, Hardy SJ et al (2013) Stoichiometry of SecYEG in the active translocase of Escherichia coli varies with precursor species. Proc Natl Acad Sci U S A 110:11815–11820. https://doi.org/10.1073/pnas.1303289110

    Article  PubMed  PubMed Central  Google Scholar 

  14. Alami M, Luke I, Deitermann S et al (2003) Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol Cell 12:937–946. https://doi.org/10.1016/s1097-2765(03)00398-8

    Article  CAS  PubMed  Google Scholar 

  15. Douville K, Price A, Eichler J, Economou A, Wickner W (1995) SecYEG and SecA are the stoichiometric components of preprotein translocase. J Biol Chem 270:20106–20111. https://doi.org/10.1074/jbc.270.34.20106

    Article  CAS  PubMed  Google Scholar 

  16. Lill R, Dowhan W, Wickner W (1990) The ATPase activity of SecA is regulated by acidic phospholipids, SecY, and the leader and mature domains of precursor proteins. Cell 60:271–280. https://doi.org/10.1016/0092-8674(90)90742-w

    Article  CAS  PubMed  Google Scholar 

  17. Kusters R, Dowhan W, de Kruijff B (1991) Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner membranes. J Biol Chem 266:8659–8662

    Article  CAS  PubMed  Google Scholar 

  18. Dalal K, Chan CS, Sligar SG, Duong F (2012) Two copies of the SecY channel and acidic lipids are necessary to activate the SecA translocation ATPase. Proc Natl Acad Sci U S A 109:4104–4109. https://doi.org/10.1073/pnas.1117783109

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Moser M, Nagamori S, Huber M, Tokuda H, Nishiyama K (2013) Glycolipozyme MPIase is essential for topology inversion of SecG during preprotein translocation. Proc Natl Acad Sci U S A 110:9734–9739. https://doi.org/10.1073/pnas.1303160110

    Article  PubMed  PubMed Central  Google Scholar 

  20. Nishiyama KI, Tokuda H (2016) Novel translocation intermediate allows re-evaluation of roles of ATP, proton motive force and SecG at the late stage of preprotein translocation. Genes Cells 21:1353–1364. https://doi.org/10.1111/gtc.12447

    Article  CAS  PubMed  Google Scholar 

  21. Corey RA, Pyle E, Allen WJ et al (2018) Specific cardiolipin-SecY interactions are required for proton-motive force stimulation of protein secretion. Proc Natl Acad Sci U S A 115:7967–7972. https://doi.org/10.1073/pnas.1721536115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Kiefer D, Hu X, Dalbey R, Kuhn A (1997) Negatively charged amino acid residues play an active role in orienting the Sec-independent Pf3 coat protein in the Escherichia coli inner membrane. EMBO J 16:2197–2204. https://doi.org/10.1093/emboj/16.9.2197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Endo Y, Shimizu Y, Nishikawa H, Sawasato K, Nishiyama KI (2022) Interplay between MPIase, YidC, and PMF during Sec-independent insertion of membrane proteins. Life Sci Alliance 5. https://doi.org/10.26508/lsa.202101162

  24. Portaliou AG, Tsolis KC, Loos MS et al (2017) Hierarchical protein targeting and secretion is controlled by an affinity switch in the type III secretion system of enteropathogenic Escherichia coli. EMBO J 36:3517–3531. https://doi.org/10.15252/embj.201797515

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Huijbregts RP, de Kroon AI, de Kruijff B (1996) Rapid transmembrane movement of C6-NBD-labeled phospholipids across the inner membrane of Escherichia coli. Biochim Biophys Acta 1280:41–50. https://doi.org/10.1016/0005-2736(95)00272-3

    Article  PubMed  Google Scholar 

  26. Huijbregts RP, de Kroon AI, de Kruijff B (1998) Rapid transmembrane movement of newly synthesized phosphatidylethanolamine across the inner membrane of Escherichia coli. J Biol Chem 273:18936–18942. https://doi.org/10.1074/jbc.273.30.18936

    Article  CAS  PubMed  Google Scholar 

  27. Rosen BP, McClees JS (1974) Active transport of calcium in inverted membrane vesicles of Escherichia coli. Proc Natl Acad Sci U S A 71:5042–5046. https://doi.org/10.1073/pnas.71.12.5042

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Schaedler TA, Tong Z, van Veen HW (2012) The multidrug transporter LmrP protein mediates selective calcium efflux. J Biol Chem 287:27682–27690. https://doi.org/10.1074/jbc.M112.372334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Voelkner P, Puppe W, Altendorf K (1993) Characterization of the KdpD protein, the sensor kinase of the K(+)-translocating Kdp system of Escherichia coli. Eur J Biochem 217:1019–1026. https://doi.org/10.1111/j.1432-1033.1993.tb18333.x

    Article  CAS  PubMed  Google Scholar 

  30. Papanastasiou M, Orfanoudaki G, Koukaki M et al (2013) The Escherichia coli peripheral inner membrane proteome. Mol Cell Proteomics 12:599–610. https://doi.org/10.1074/mcp.M112.024711

    Article  CAS  PubMed  Google Scholar 

  31. Tsolis KC, Economou A (2017) Quantitative proteomics of the E. coli Membranome. Methods Enzymol 586:15–36. https://doi.org/10.1016/bs.mie.2016.09.026

    Article  CAS  PubMed  Google Scholar 

  32. Euro L, Belevich G, Verkhovsky MI, Wikstrom M, Verkhovskaya M (2008) Conserved lysine residues of the membrane subunit NuoM are involved in energy conversion by the proton-pumping NADH:ubiquinone oxidoreductase (Complex I). Biochim Biophys Acta 1777:1166–1172. https://doi.org/10.1016/j.bbabio.2008.06.001

    Article  CAS  PubMed  Google Scholar 

  33. Yamada H, Moriyama Y, Maeda M, Futai M (1996) Transmembrane topology of Escherichia coli H(+)-ATPase (ATP synthase) subunit a. FEBS Lett 390:34–38. https://doi.org/10.1016/0014-5793(96)00621-7

    Article  CAS  PubMed  Google Scholar 

  34. Jung K, Altendorf K (2002) Towards an understanding of the molecular mechanisms of stimulus perception and signal transduction by the KdpD/KdpE system of Escherichia coli. J Mol Microbiol Biotechnol 4:223–228

    CAS  PubMed  Google Scholar 

  35. Ma P, Yuille HM, Blessie V et al (2008) Expression, purification and activities of the entire family of intact membrane sensor kinases from Enterococcus faecalis. Mol Membr Biol 25:449–473. https://doi.org/10.1080/09687680802359885

    Article  CAS  PubMed  Google Scholar 

  36. Orfanoudaki G, Economou A (2014) Proteome-wide subcellular topologies of E. coli polypeptides database (STEPdb). Mol Cell Proteomics 13:3674–3687. https://doi.org/10.1074/mcp.O114.041137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Terashima H, Kawamoto A, Tatsumi C et al (2018) In vitro reconstitution of functional type III protein export and insights into flagellar assembly. mBio 9. https://doi.org/10.1128/mBio.00988-18

  38. Bogdanov M, Heacock PN, Dowhan W (2002) A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition. EMBO J 21:2107–2116. https://doi.org/10.1093/emboj/21.9.2107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Bogdanov M, Xie J, Heacock P, Dowhan W (2008) To flip or not to flip: lipid-protein charge interactions are a determinant of final membrane protein topology. J Cell Biol 182:925–935. https://doi.org/10.1083/jcb.200803097

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dowhan W, Bogdanov M (2009) Lipid-dependent membrane protein topogenesis. Annu Rev Biochem 78:515–540. https://doi.org/10.1146/annurev.biochem.77.060806.091251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Bogdanov M, Dowhan W, Vitrac H (2014) Lipids and topological rules governing membrane protein assembly. Biochim Biophys Acta 1843:1475–1488. https://doi.org/10.1016/j.bbamcr.2013.12.007

    Article  CAS  PubMed  Google Scholar 

  42. Bogdanov M, Vitrac H, Dowhan W (2018) Flip-flopping membrane proteins: how the charge balance rule governs dynamic membrane protein topology. In: Geiger O (ed) Biogenesis of fatty acids, lipids and membranes. Handbook of hydrocarbon and lipid microbiology. Springer, Cham, pp 1–28

    Google Scholar 

  43. Bogdanov M, Zhang W, Xie J, Dowhan W (2005) Transmembrane protein topology mapping by the substituted cysteine accessibility method (SCAM(TM)): application to lipid-specific membrane protein topogenesis. Methods 36:148–171. https://doi.org/10.1016/j.ymeth.2004.11.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Hugenholtz J, Hong JS, Kaback HR (1981) ATP-driven active transport in right-side-out bacterial membrane vesicles. Proc Natl Acad Sci U S A 78:3446–3449. https://doi.org/10.1073/pnas.78.6.3446

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Seckler R, Wright JK (1984) Sidedness of native membrane vesicles of Escherichia coli and orientation of the reconstituted lactose: H+ carrier. Eur J Biochem 142:269–279. https://doi.org/10.1111/j.1432-1033.1984.tb08281.x

    Article  CAS  PubMed  Google Scholar 

  46. Hare JF, Olden K, Kennedy EP (1974) Heterogeneity of membrane vesicles from Escherichia coli and their subfractionation with antibody to ATPase. Proc Natl Acad Sci U S A 71:4843–4846. https://doi.org/10.1073/pnas.71.12.4843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Futai M (1974) Orientation of membrane vesicles from Escherichia coli prepared by different procedures. J Membr Biol 15:15–28. https://doi.org/10.1007/BF01870079

    Article  CAS  PubMed  Google Scholar 

  48. Altendorf KH, Staehelin LA (1974) Orientation of membrane vesicles from Escherichia coli as detected by freeze-cleave electron microscopy. J Bacteriol 117:888–899. https://doi.org/10.1128/jb.117.2.888-899.1974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Hettwer D, Wang H (1989) Protein release from Escherichia coli cells permeabilized with guanidine-HCl and Triton X100. Biotechnol Bioeng 33:886–895. https://doi.org/10.1002/bit.260330712

    Article  CAS  PubMed  Google Scholar 

  50. Verkhovskaya M (2017) Preparation of everted membrane vesicles from Escherichia coli cells. Bio Protoc 7:e2254. https://doi.org/10.21769/BioProtoc.2254

    Article  PubMed  PubMed Central  Google Scholar 

  51. Tsuchiya T, Rosen BP (1975) Characterization of an active transport system for calcium in inverted membrane vesicles of Escherichia coli. J Biol Chem 250:7687–7692

    Article  CAS  PubMed  Google Scholar 

  52. Adler LW, Rosen BP (1977) Functional mosaicism of membrane proteins in vesicles of Escherichia coli. J Bacteriol 129:959–966. https://doi.org/10.1128/jb.129.2.959-966.1977

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Nelson SO, Wright JK, Postma PW (1983) The mechanism of inducer exclusion. Direct interaction between purified III of the phosphoenolpyruvate:sugar phosphotransferase system and the lactose carrier of Escherichia coli. EMBO J 2:715–720. https://doi.org/10.1002/j.1460-2075.1983.tb01490.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Jacoby GH, Young KD (1990) Heterogeneity among membrane vesicles of Escherichia coli: effects of production and fractionation techniques. Anal Biochem 184:48–54. https://doi.org/10.1016/0003-2697(90)90009-x

    Article  CAS  PubMed  Google Scholar 

  55. Liang FC, Bageshwar UK, Musser SM (2009) Bacterial Sec protein transport is rate-limited by precursor length: a single turnover study. Mol Biol Cell 20:4256–4266. https://doi.org/10.1091/mbc.e09-01-0075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Papanastasiou M, Orfanoudaki G, Kountourakis N et al (2016) Rapid label-free quantitative analysis of the E. coli BL21(DE3) inner membrane proteome. Proteomics 16:85–97. https://doi.org/10.1002/pmic.201500304

    Article  CAS  PubMed  Google Scholar 

  57. Bageshwar UK, Musser SM (2007) Two electrical potential-dependent steps are required for transport by the Escherichia coli Tat machinery. J Cell Biol 179:87–99. https://doi.org/10.1083/jcb.200702082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Mao C, Bariya P, Suo Y, Randall LL (2020) Comparison of single and multiple turnovers of SecYEG in Escherichia coli. J Bacteriol 202. https://doi.org/10.1128/JB.00462-20

  59. van der Laan M, Houben EN, Nouwen N, Luirink J, Driessen AJ (2001) Reconstitution of Sec-dependent membrane protein insertion: nascent FtsQ interacts with YidC in a SecYEG-dependent manner. EMBO Rep 2:519–523. https://doi.org/10.1093/embo-reports/kve106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sharma A, Chowdhury R, Musser SM (2022) Oligomerization state of the functional bacterial twin-arginine translocation (Tat) receptor complex. Commun Biol 5:988. https://doi.org/10.1038/s42003-022-03952-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Adamczyk-Poplawska M, Tracz-Gaszewska Z, Lasota P, Kwiatek A, Piekarowicz A (2020) Haemophilus influenzae HP1 bacteriophage encodes a lytic cassette with a pinholin and a signal-Arrest-Release Endolysin. Int J Mol Sci 21. https://doi.org/10.3390/ijms21114013

  62. Bolhuis A, Mathers JE, Thomas JD, Barrett CM, Robinson C (2001) TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J Biol Chem 276:20213–20219. https://doi.org/10.1074/jbc.M100682200

    Article  CAS  PubMed  Google Scholar 

  63. Gouffi K, Gerard F, Santini CL, Wu LF (2004) Dual topology of the Escherichia coli TatA protein. J Biol Chem 279:11608–11615. https://doi.org/10.1074/jbc.M313187200

    Article  CAS  PubMed  Google Scholar 

  64. Wolfe PB, Wickner W, Goodman JM (1983) Sequence of the leader peptidase gene of Escherichia coli and the orientation of leader peptidase in the bacterial envelope. J Biol Chem 258:12073–12080

    Article  CAS  PubMed  Google Scholar 

  65. Dalbey RE, Wickner W (1985) Leader peptidase catalyzes the release of exported proteins from the outer surface of the Escherichia coli plasma membrane. J Biol Chem 260:15925–15931

    Article  CAS  PubMed  Google Scholar 

  66. Bogdanov M, Dowhan W (1995) Phosphatidylethanolamine is required for in vivo function of the membrane-associated lactose permease of Escherichia coli. J Biol Chem 270:732–739. https://doi.org/10.1074/jbc.270.2.732

    Article  CAS  PubMed  Google Scholar 

  67. Bogdanov M, Sun J, Kaback HR, Dowhan W (1996) A phospholipid acts as a chaperone in assembly of a membrane transport protein. J Biol Chem 271:11615–11618. https://doi.org/10.1074/jbc.271.20.11615

    Article  CAS  PubMed  Google Scholar 

  68. Wang P, Dalbey RE (2010) In vitro and in vivo approaches to studying the bacterial signal peptide processing. Methods Mol Biol 619:21–37. https://doi.org/10.1007/978-1-60327-412-8_2

    Article  CAS  PubMed  Google Scholar 

  69. Yamato I, Futai M, Anraku Y, Nonomura Y (1978) Cytoplasmic membrane vesicles of Escherichia coli. II. Orientation of the vesicles studied by localization of enzymes. J Biochem 83:117–128. https://doi.org/10.1093/oxfordjournals.jbchem.a131882

    Article  CAS  PubMed  Google Scholar 

  70. Wickner W (1976) Fractionation of membrane vesicles from coliphage M13-infected Escherichia coli. J Bacteriol 127:162–167. https://doi.org/10.1128/jb.127.1.162-167.1976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Hertzberg EL, Hinkle PC (1974) Oxidative phosphorylation and proton translocation in membrane vesicles prepared from Escherichia coli. Biochem Biophys Res Commun 58:178–184. https://doi.org/10.1016/0006-291x(74)90908-5

    Article  CAS  PubMed  Google Scholar 

  72. Siebers A, Altendorf K (1988) The K+-translocating Kdp-ATPase from Escherichia coli. Purification, enzymatic properties and production of complex- and subunit-specific antisera. Eur J Biochem 178:131–140. https://doi.org/10.1111/j.1432-1033.1988.tb14438.x

    Article  CAS  PubMed  Google Scholar 

  73. Li G, Young KD (2012) Isolation and identification of new inner membrane-associated proteins that localize to cell poles in Escherichia coli. Mol Microbiol 84:276–295. https://doi.org/10.1111/j.1365-2958.2012.08021.x

    Article  CAS  PubMed  Google Scholar 

  74. Herman C, Prakash S, Lu CZ, Matouschek A, Gross CA (2003) Lack of a robust unfoldase activity confers a unique level of substrate specificity to the universal AAA protease FtsH. Mol Cell 11:659–669. https://doi.org/10.1016/s1097-2765(03)00068-6

    Article  CAS  PubMed  Google Scholar 

  75. Meyrat A, von Ballmoos C (2019) ATP synthesis at physiological nucleotide concentrations. Sci Rep 9:3070. https://doi.org/10.1038/s41598-019-38564-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Yamada H, Matsuyama S, Tokuda H, Mizushima S (1989) A high concentration of SecA allows proton motive force-independent translocation of a model secretory protein into Escherichia coli membrane vesicles. J Biol Chem 264:18577–18581

    Article  CAS  PubMed  Google Scholar 

  77. Bageshwar UK, DattaGupta A, Musser SM (2021) Influence of the TorD signal peptide chaperone on Tat-dependent protein translocation. PLoS One 16:e0256715. https://doi.org/10.1371/journal.pone.0256715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Rietveld AG, Koorengevel MC, de Kruijff B (1995) Non-bilayer lipids are required for efficient protein transport across the plasma membrane of Escherichia coli. EMBO J 14:5506–5513. https://doi.org/10.1002/j.1460-2075.1995.tb00237.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Owen P, Kaback HR (1979) Antigenic architecture of membrane vesicles from Escherichia coli. Biochemistry 18:1422–1426. https://doi.org/10.1021/bi00575a005

    Article  CAS  PubMed  Google Scholar 

  80. Yamato I, Anraku Y, Hirosawa K (1975) Cytoplasmic membrane vesicles of Escherichia coli. A simple method for preparing the cytoplasmic and outer membranes. J Biochem 77:705–718. https://doi.org/10.1093/oxfordjournals.jbchem.a130774

    Article  CAS  PubMed  Google Scholar 

  81. Doerrler WT, Gibbons HS, Raetz CR (2004) MsbA-dependent translocation of lipids across the inner membrane of Escherichia coli. J Biol Chem 279:45102–45109. https://doi.org/10.1074/jbc.M408106200

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grant R01GM121493-6, European Union Marie Skłodowska-Curie Grant H2020-MSCA-RISE-2015-690853, and NATO Science for Peace and Security Programme-SPS 98529.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mikhail Bogdanov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2024 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Bogdanov, M. (2024). Preparation of Uniformly Oriented Inverted Inner (Cytoplasmic) Membrane Vesicles from Gram-Negative Bacterial Cells. In: Journet, L., Cascales, E. (eds) Bacterial Secretion Systems . Methods in Molecular Biology, vol 2715. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3445-5_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3445-5_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3444-8

  • Online ISBN: 978-1-0716-3445-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics