Skip to main content

Target Deconvolution by Limited Proteolysis Coupled to Mass Spectrometry

  • Protocol
  • First Online:
Chemogenomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2706))

Abstract

Limited proteolysis coupled to mass spectrometry (LiP-MS) is a recent proteomics technique that allows structure-based target engagement profiling on a proteome-wide level. To achieve this, native lysates are first incubated with a compound, followed by a short incubation with a nonspecific protease. Binding of a compound can change accessibility at the binding site or induce other structural changes in the target. This leads to treatment-specific proteolytic fingerprints upon limited proteolysis, which can be analyzed by standard bottom-up MS-based proteomics. Here, we describe a basic LiP-MS protocol using the natural product rapamycin as an example compound. Along with the provided LiP-MS reference data available via ProteomeXchange with identifier PXD035183, this enables the straightforward implementation of the method by scientists with a basic biochemistry and mass spectrometry background. We describe how the procedure can easily be adapted to other protein samples and small molecules.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Molina DM, Jafari R, Ignatushchenko M et al (2013) Monitoring drug target engagement in cells and tissues using the cellular thermal shift assay. Science 341(6141):84–87. https://doi.org/10.1126/science.1233606

  2. Piazza I, Beaton N, Bruderer R et al (2020) A machine learning-based chemoproteomic approach to identify drug targets and binding sites in complex proteomes. Nat Commun 11(1):4200. https://doi.org/10.1038/s41467-020-18071-x

  3. Meissner F, Geddes-McAlister J, Mann M, Bantscheff M (2022) The emerging role of mass spectrometry-based proteomics in drug discovery. Nat Rev Drug Discov 21(9):637–654. https://doi.org/10.1038/s41573-022-00409-3

  4. Feng Y, De Franceschi G, Kahraman A et al (2014) Global analysis of protein structural changes in complex proteomes. Nat Biotechnol 32(10):1036–1044. https://doi.org/10.1038/nbt.2999

  5. Hendricks JA, Beaton N, Chernobrovkin A et al (2022) Mechanistic insights into a CDK9 inhibitor via orthogonal proteomics methods. ACS Chem Biol 17(1):54–67. https://doi.org/10.1021/acschembio.1c00488

  6. Gillet LC, Navarro P, Tate S et al (2012) Targeted data extraction of the MS/MS spectra generated by data-independent acquisition: a new concept for consistent and accurate proteome analysis. Mol Cell Proteomics 11(6):O111.016717. https://doi.org/10.1074/mcp.O111.016717

  7. Bruderer R, Bernhardt OM, Gandhi T et al (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14(5):1400–1410. https://doi.org/10.1074/mcp.M114.044305

  8. Quast J-P, Schuster D, Picotti P (2022) Protti: an R package for comprehensive data analysis of peptide- and protein-centric bottom-up proteomics data. Bioinforma Adv 2(1):vbab041. https://doi.org/10.1093/BIOADV/VBAB041

  9. Benjamini Y, Hochberg Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc Ser B 57(1):289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x

  10. Perez-Riverol Y, Bai J, Bandla C et al (2022) The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res 50(D1):D543–D552. https://doi.org/10.1093/nar/gkab1038

Download references

Acknowledgements

We would like to acknowledge valuable inputs from Ludovic Gillet and the rest of the Picotti lab for optimising this protocol. This work was supported by the Innovative Medicines Initiative 2 Joint Undertaking (JU) under grant agreement No 875510. The JU receives support from the European Union’s Horizon 2020 research and innovation program and EFPIA and Ontario Institute for Cancer Research, Royal Institution for the Advancement of Learning McGill University, Kungliga Tekniska Hoegskolan, Diamond Light Source Limited.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Gstaiger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Reber, V., Gstaiger, M. (2023). Target Deconvolution by Limited Proteolysis Coupled to Mass Spectrometry. In: Merk, D., Chaikuad, A. (eds) Chemogenomics. Methods in Molecular Biology, vol 2706. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3397-7_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3397-7_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3396-0

  • Online ISBN: 978-1-0716-3397-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics