Skip to main content

Limited Proteolysis–Mass Spectrometry to Identify Metabolite–Protein Interactions

  • Protocol
  • First Online:
Cell-Wide Identification of Metabolite-Protein Interactions

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2554))

Abstract

Metabolite–protein interactions regulate diverse cellular processes, prompting the development of methods to investigate the metabolite–protein interactome at a global scale. One such method is our previously developed structural proteomics approach, limited proteolysis–mass spectrometry (LiP–MS), which detects proteome-wide metabolite–protein and drug–protein interactions in native bacterial, yeast, and mammalian systems, and allows identification of binding sites without chemical modification. Here we describe a detailed experimental and analytical workflow for conducting a LiP–MS experiment to detect small molecule–protein interactions, either in a single-dose (LiP–SMap) or a multiple-dose (LiP–Quant) format. LiP–Quant analysis combines the peptide-level resolution of LiP–MS with a machine learning-based framework to prioritize true protein targets of a small molecule of interest. We provide an updated R script for LiP–Quant analysis via a GitHub repository accessible at https://github.com/RolandBruderer/MiMB-LiP-Quant.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Chubukov V, Gerosa L, Kochanowski K, Sauer U (2014) Coordination of microbial metabolism. Nat Rev Microbiol 12:327–340

    Google Scholar 

  2. Lindsley JE, Rutter J (2006) Whence cometh the allosterome? Proc Natl Acad Sci U S A 103:10533–10535

    Google Scholar 

  3. Bennett BD, Kimball EH, Gao M et al (2009) Absolute metabolite concentrations and implied enzyme active site occupancy in Escherichia coli. Nat Chem Biol 5:593–599. https://doi.org/10.1038/nchembio.186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Lomenick B, Hao R, Jonai N et al (2009) Target identification using drug affinity responsive target stability (DARTS). Proc Natl Acad Sci U S A 106:21984–21989. https://doi.org/10.1073/pnas.0910040106

    Article  PubMed  PubMed Central  Google Scholar 

  5. Gallego O, Betts MJ, Gvozdenovic-Jeremic J et al (2010) A systematic screen for proteing-lipid interactions in Saccharomyces cerevisiae. Mol Syst Biol 6. https://doi.org/10.1038/msb.2010.87

  6. Savitski MM, Reinhard FBM, Franken H et al (2014) Tracking cancer drugs in living cells by thermal profiling of the proteome. Science 346. https://doi.org/10.1126/science.1255784

  7. Huber KVM, Olek KM, Müller AC et al (2015) Proteome-wide drug and metabolite interaction mapping by thermal-stability profiling. Nat Methods 12:1055–1057

    Google Scholar 

  8. Geer MA, Fitzgerald MC (2016) Characterization of the Saccharomyces cerevisiae ATP-Interactome using the iTRAQ-SPROX technique. J Am Soc Mass Spectrom 27:233–243. https://doi.org/10.1007/s13361-015-1290-z

    Article  CAS  PubMed  Google Scholar 

  9. Piazza I, Kochanowski K, Cappelletti V et al (2018) A map of protein-metabolite interactions reveals principles of chemical communication. Cell 172:358–372.e23. https://doi.org/10.1016/j.cell.2017.12.006

    Article  CAS  PubMed  Google Scholar 

  10. Diether M, Nikolaev Y, Allain FH, Sauer U (2019) Systematic mapping of protein-metabolite interactions in central metabolism of Escherichia coli. Mol Syst Biol 15. https://doi.org/10.15252/msb.20199008

  11. Piazza I, Beaton N, Bruderer R et al (2020) A machine learning-based chemoproteomics approach to identify drug targets and binding sites in complex proteomes. Nat Commun 11. https://doi.org/10.1038/s41467-020-18071-x

  12. Rappsilber J, Mann M, Ishihama Y (2007) Protocol for micro-purification, enrichment, pre-fractionation and storage of peptides for proteomics using StageTips. Nat Protoc 2:1896–1906. https://doi.org/10.1038/nprot.2007.261

    Article  CAS  PubMed  Google Scholar 

  13. Bruderer R, Bernhardt OM, Gandhi T et al (2015) Extending the limits of quantitative proteome profiling with data-independent acquisition and application to acetaminophen-treated three-dimensional liver microtissues. Mol Cell Proteomics 14:1400–1410. https://doi.org/10.1074/mcp.M114.044305

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Schopper S, Kahraman A, Leuenberger P et al (2017) Measuring protein structural changes on a proteome-wide scale using limited proteolysis-coupled mass spectrometry. Nat Protoc 12:2391–2410. https://doi.org/10.1038/nprot.2017.100

    Article  CAS  PubMed  Google Scholar 

  15. Ritz C, Baty F, Streibig JC, Gerhard D (2015) Dose-response analysis using R. PLoS One 10:1–13. https://doi.org/10.1371/journal.pone.0146021

    Article  CAS  Google Scholar 

  16. Cappelletti V, Hauser T, Piazza I et al (2021) Dynamic 3D proteomes reveal protein functional alterations at high resolution in situ. Cell 184:545–559.e22. https://doi.org/10.1016/j.cell.2020.12.021

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

This work was supported by the European Research Council (grant agreement no. 866004), the EPIC-XS Consortium (grant agreement no. 823839), a Sinergia grant from the Swiss National Science Foundation (SNSF grant CRSII5_177195), the National Center of Competence in Research AntiResist and the Promedica Stiftung, Chur.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paola Picotti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Holfeld, A., Quast, JP., Bruderer, R., Reiter, L., de Souza, N., Picotti, P. (2023). Limited Proteolysis–Mass Spectrometry to Identify Metabolite–Protein Interactions. In: Skirycz, A., Luzarowski, M., Ewald, J.C. (eds) Cell-Wide Identification of Metabolite-Protein Interactions. Methods in Molecular Biology, vol 2554. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2624-5_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2624-5_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2623-8

  • Online ISBN: 978-1-0716-2624-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics