Skip to main content

InpactorDB: A Plant LTR Retrotransposon Reference Library

  • Protocol
  • First Online:
Plant Genomic and Cytogenetic Databases

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2703))

  • 264 Accesses

Abstract

LTR retrotransposons (LTR-RT) are major components of plant genomes. These transposable elements participate in the structure and evolution of genes and genomes through their mobility and their copy number amplification. For example, they are commonly used as evolutionary markers in genetic, genomic, and cytogenetic approaches. However, the plant research community is faced with the near absence of free availability of full-length, curated, and lineage-level classified LTR retrotransposon reference sequences. In this chapter, we will introduce InpactorDB, an LTR retrotransposon sequence database of 181 plant species representing 98 plant families for a total of 67,241 non-redundant elements. We will introduce how to use newly sequenced genomes to identify and classify LTR-RTs in a similar way with a standardized procedure using the Inpactor tool. InpactorDB is freely available at https://inpactordb.github.io.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Orozco-Arias S, Isaza G, Guyot R (2019) Retrotransposons in plant genomes: structure, identification, and classification through bioinformatics and machine learning. Int J Mol Sci 20:3837. https://doi.org/10.3390/ijms20153837

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Akakpo R, Carpentier MC, Ie Hsing Y, Panaud O (2020) The impact of transposable elements on the structure, evolution and function of the rice genome. New Phytol 226:44–49. https://doi.org/10.1111/nph.16356

    Article  PubMed  Google Scholar 

  3. Schulman AH, Flavell AJ, Paux E, Ellis THN (2012) The application of LTR retrotransposons as molecular markers in plants. Methods Mol Biol (Clifton NJ) 859:115–153. https://doi.org/10.1007/978-1-61779-603-6_7

    Article  CAS  Google Scholar 

  4. Domínguez M, Dugas E, Benchouaia M et al (2020) The impact of transposable elements on tomato diversity. Nat Commun 11:4058. https://doi.org/10.1038/s41467-020-17874-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Neumann P, Navrátilová A, Koblížková A et al (2011) Plant centromeric retrotransposons: a structural and cytogenetic perspective. Mob DNA 2:4. https://doi.org/10.1186/1759-8753-2-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Sabot F, Guyot R, Wicker T et al (2005) Updating of transposable element annotations from large wheat genomic sequences reveals diverse activities and gene associations. Mol Gen Genomics 274:119–130. https://doi.org/10.1007/s00438-005-0012-9

    Article  CAS  Google Scholar 

  7. Neumann P, Novák P, Hoštáková N, Macas J (2019) Systematic survey of plant LTR-retrotransposons elucidates phylogenetic relationships of their polyprotein domains and provides a reference for element classification. Mob DNA 10:1. https://doi.org/10.1186/s13100-018-0144-1

    Article  PubMed  PubMed Central  Google Scholar 

  8. Orozco-Arias S, Liu J, Tabares-Soto R et al (2018) Inpactor, integrated and parallel analyzer and classifier of LTR retrotransposons and its application for pineapple LTR retrotransposons diversity and dynamics. Biology 7:32. https://doi.org/10.3390/biology7020032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang RG, Li GY, Wang XL et al (2022) TEsorter: an accurate and fast method to classify LTR-retrotransposons in plant genomes. Hortic Res 9:uhac017. https://doi.org/10.1093/hr/uhac017

    Article  PubMed  PubMed Central  Google Scholar 

  10. Orozco-Arias S, Jaimes PA, Candamil MS et al (2021) InpactorDB: a classified lineage-level plant LTR retrotransposon reference library for free-alignment methods based on machine learning. Genes 12:190. https://doi.org/10.3390/genes12020190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Oliveira LS, de Amorim TS, Pedro DLF et al (2021) A practical guide on computational tools and databases for transposable elements in plants. In: Cho J (ed) Plant transposable elements, Methods in molecular biology, vol 2250. Springer, New York

    Chapter  Google Scholar 

  12. Ou S, Su W, Liao Y et al (2019) Benchmarking transposable element annotation methods for creation of a streamlined, comprehensive pipeline. Genome Biol 20:275. https://doi.org/10.1186/s13059-019-1905-y

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Xu Z, Wang H (2007) LTR_FINDER: an efficient tool for the prediction of full-length LTR retrotransposons. Nucleic Acids Res 35:W265–W268. https://doi.org/10.1093/nar/gkm286

    Article  PubMed  PubMed Central  Google Scholar 

  14. Su W, Ou S, Hufford MB, Peterson TA (2021) Tutorial of EDTA: extensive De Novo TE annotator. In: Cho J (ed) Plant transposable elements, Methods in molecular biology, vol 2250. Humana, New York

    Chapter  Google Scholar 

  15. de Castro NR, Orozco-Arias S, Crouzillat D et al (2018) Structure and distribution of centromeric retrotransposons at diploid and allotetraploid Coffea centromeric and pericentromeric regions. Front Plant Sci 9:175. https://doi.org/10.3389/fpls.2018.00175

    Article  Google Scholar 

  16. Orozco-Arias S, Dupeyron M, Gutiérrez-Duque D et al (2023) High nucleotide similarity of three Copia lineage LTR retrotransposons among plant genomes. Genome. https://doi.org/10.1139/gen-2022-0026

Download references

Acknowledgments

The authors acknowledge the IFB Core Cluster that is part of the National Network of Compute Resources (NNCR) of the Institut Français de Bioinformatique (https://www.france-bioinformatique.fr) and the IRD itrop (https://bioinfo.ird.fr/) at IRD Montpellier for providing HPC resources that have contributed to the research results reported in this paper. The authors thank the LMI BIO_INCA (bioinca.org), the STICAMSUD 21-STIC-13, ECOS-Nord C21MA01, and Minciencias Grant Call 785/2017 for providing support. The authors declare there is no competing financial interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Romain Guyot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Orozco-Arias, S., Gaviria-Orrego, S., Tabares-Soto, R., Isaza, G., Guyot, R. (2023). InpactorDB: A Plant LTR Retrotransposon Reference Library. In: Garcia, S., Nualart, N. (eds) Plant Genomic and Cytogenetic Databases. Methods in Molecular Biology, vol 2703. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3389-2_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3389-2_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3388-5

  • Online ISBN: 978-1-0716-3389-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics