Skip to main content

Perspective: Mass Spectrometry Imaging – The Next 5 Years

  • Protocol
  • First Online:
Imaging Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2688))

Summary

In order to achieve even more widespread adoption over the next 5 years, a number of issues in mass spectrometry imaging need to be addressed. These are non-observation of compounds (due to ionization suppression), sample throughput, imaging of low-abundant species, and how to extract information from the large volumes of data generated. In this article, how current research indicates that these issues will be resolved along with potential application areas that MSI could look to exploit is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Taylor AJ, Dexter A, Bunch J (2018) Exploring ion suppression in mass spectrometry imaging of a heterogeneous tissue. Anal Chem 90:5637

    Article  CAS  PubMed  Google Scholar 

  2. Challen B, Cramer R (2022) Advances in ionisation techniques for mass spectrometry-based omics research. Proteomics 22:2100394

    Article  CAS  Google Scholar 

  3. Soltwisch J, Kettling H, Vens-Cappell S, Wiegelmann M, Muthing J, Dreisewerd K (2015) Mass spectrometry imaging with laser-induced postionization. Science 348:211–215

    Article  CAS  PubMed  Google Scholar 

  4. Steven RT, Shaw M, Dexter A, Murta T, Green FM, Robinson KN, Gilmore IS, Takats Z, Bunch J (2019) Construction and testing of an atmospheric-pressure transmission-mode matrix assisted laser desorption ionisation mass spectrometry imaging ion source with plasma ionisation enhancement. Anal Chim Acta 1051:110–119

    Article  CAS  PubMed  Google Scholar 

  5. Soltwisch J, Heijs B, Koch A, Vens-Cappell S, Höhndorf J, Dreisewerd K (2020) MALDI-2 on a trapped ion mobility quadrupole time-of-flight instrument for rapid mass spectrometry imaging and ion mobility separation of complex lipid profiles. Anal Chem 92:8697–8703

    Article  CAS  PubMed  Google Scholar 

  6. Trim PJ, Djidja M-C, Atkinson SJ, Oakes K, Cole LM, Anderson DMG, Hart PJ, Francese S, Clench MR (2010) Introduction of a 20 kHz Nd:YVO4 laser into a hybrid quadrupole time-of-flight mass spectrometer for MALDI-MS imaging. Anal Bioanal Chem 397:3409–3419

    Article  CAS  PubMed  Google Scholar 

  7. Simmons DA (2008) Improved MALDI-MS imaging performance using continuous laser rastering. Appl Biosyst Tech Note 1–5

    Google Scholar 

  8. McDonnell LA, Heeren RMA (2007) Imaging mass spectrometry. Mass Spectrom Rev 26:606–643

    Article  CAS  PubMed  Google Scholar 

  9. Guo A, Burleigh RJ, Smith N, Brouard M, Burt M (2020) High-resolution ion microscope imaging over wide mass ranges using electrodynamic postextraction differential acceleration. J Am Soc Mass Spectrom 31:1903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Körber A, Keelor JD, Claes BSR, Heeren RMA, Anthony IGM (2022) Fast mass microscopy: mass spectrometry imaging of a gigapixel image in 34 minutes. Anal Chem (Washington) 94:14652

    Article  Google Scholar 

  11. Staab D, Morandi G, Stoeckli M (2013) Mass spectrometric imaging applied to biomedical research. Chimia 67:296

    Article  CAS  Google Scholar 

  12. Henderson F, Jones E, Denbigh J, Christie L, Chapman R, Hoyes E, Claude E, Williams KJ, Roncaroli F, McMahon A (2020) 3D DESI-MS lipid imaging in a xenograft model of glioblastoma: a proof of principle. Sci Rep 10:16512

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Caprioli RM, Farmer TB, Gile J (1997) Molecular imaging of biological samples: localization of peptides and proteins using MALDI-TOF MS. Anal Chem 69:4751–4760

    Article  CAS  PubMed  Google Scholar 

  14. Giesen C, Wang HAO, Schapiro D, Zivanovic N, Jacobs A, Hattendorf B, Schüffler PJ, Grolimund D, Buhmann JM, Brandt S, Varga Z, Wild PJ, Günther D, Bodenmiller B (2014) Highly multiplexed imaging of tumor tissues with subcellular resolution by mass cytometry. Nat Methods 11:417–422

    Article  CAS  PubMed  Google Scholar 

  15. Le Rochais M, Hemon P, Pers J-O, Uguen A (2022) Application of high-throughput imaging mass cytometry hyperion in cancer research. Front Immunol 13:859414

    Article  PubMed  PubMed Central  Google Scholar 

  16. Yagnik G, Liu Z, Rothschild KJ, Lim MJ (2021) Highly multiplexed immunohistochemical MALDI-MS imaging of biomarkers in tissues. J Am Soc Mass Spectrom 32:977–988

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Corr JJ, Kovarik P, Schneider BB, Hendrikse J, Loboda A, Covey TR (2006) Design considerations for high speed quantitative mass spectrometry with MALDI ionization. J Am Soc Mass Spectrom 17:1129–1141

    Article  CAS  PubMed  Google Scholar 

  18. Lamont L, Eijkel GB, Jones EA, Flinders B, Ellis SR, Porta Siegel T, Heeren RMA, Vreeken RJ (2018) Targeted drug and metabolite imaging: desorption electrospray ionization combined with triple quadrupole mass spectrometry. Anal Chem 90:13229–13235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lamont L, Hadavi D, Viehmann B, Flinders B, Heeren RMA, Vreeken RJ, Porta Siegel T (2021) Quantitative mass spectrometry imaging of drugs and metabolites: a multiplatform comparison. Anal Bioanal Chem 413:2779–2791

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Hale OJ, Cooper HJ (2021) Native mass spectrometry imaging of proteins and protein complexes by nano-DESI. Anal Chem 93:4619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Illes-Toth E, Ramos MR, Cappai R, Dalton C, Smith DP (2015) Distinct higher-order α-synuclein oligomers induce intracellular aggregation. Biochem J 468:485–493

    Article  CAS  PubMed  Google Scholar 

  22. Li H, Amanda B (2011) Hummon imaging mass spectrometry of three-dimensional cell culture systems. Anal Chem 83:8794

    Article  CAS  PubMed  Google Scholar 

  23. Avery JL, McEwen A, Flinders B, Francese S, Clench MR (2011) Matrix-assisted laser desorption mass spectrometry imaging for the examination of imipramine absorption by Straticell-RHE-EPI/001 an artificial model of the human epidermis. Xenobiotica 41:735–742

    Article  CAS  PubMed  Google Scholar 

  24. Spencer CE, Flint LE, Duckett CJ, Cole LM, Cross N, Smith DP, Clench MR (2020) Role of MALDI-MSI in combination with 3D tissue models for early stage efficacy and safety testing of drugs and toxicants. Expert Rev Proteomics 17:827–841

    Article  CAS  PubMed  Google Scholar 

  25. Hu H, Laskin J (2022) Emerging computational methods in mass spectrometry imaging. Adv Sci 9:e2203339–e2203n/a

    Article  Google Scholar 

  26. Zhang Q, Burrage MK, Lukaschuk E, Shanmuganathan M, Popescu IA, Nikolaidou C, Mills R, Werys K, Hann E, Barutcu A, Polat SD, null n, Salerno M, Jerosch-Herold M, Kwong RY, Watkins HC, Kramer CM, Neubauer S, Ferreira VM, Piechnik SK (2021) Toward replacing late gadolinium enhancement with artificial intelligence virtual native enhancement for gadolinium-free cardiovascular magnetic resonance tissue characterization in hypertrophic cardiomyopathy. Circulation 144:589–599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abdelmoula WM, Lopez BG, Randall EC, Kapur T, Sarkaria JN, White FM, Agar JN, Wells WM, Agar NYR (2021) Peak learning of mass spectrometry imaging data using artificial neural networks. Nat Commun 12:5544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Borodinov N, Lorenz M, King ST, Ievlev AV, Ovchinnikova OS (2020) Toward nanoscale molecular mass spectrometry imaging via physically constrained machine learning on co-registered multimodal data. NPJ Computat Mater 6:83

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Malcolm R. Clench .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Clench, M.R., Cole, L.M. (2023). Perspective: Mass Spectrometry Imaging – The Next 5 Years. In: Cole, L.M., Clench, M.R. (eds) Imaging Mass Spectrometry. Methods in Molecular Biology, vol 2688. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3319-9_17

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3319-9_17

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3318-2

  • Online ISBN: 978-1-0716-3319-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics