Skip to main content

Multimodal Mass Spectrometry Imaging of an Aggregated 3D Cell Culture Model

  • Protocol
  • First Online:
Imaging Mass Spectrometry

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2688))

Abstract

Multimodal mass spectrometry imaging (MSI) is a leading approach for investigating the molecular processes within biological samples. The parallel detection of compounds including metabolites, lipids, proteins, and metal isotopes allows for a more holistic understanding of tissue microenvironments. Universal sample preparation is a primary enabler for samples of the same set to be run across multiple modalities. Using the same method and materials for a cohort of samples reduces any potential variability during sample preparation and allows for comparable analysis across analytical imaging techniques. Here, the MSI workflow is describing a sample preparation protocol for the analysis of three-dimensional (3D) cell culture models. The analysis of biologically relevant cultures by multimodal MSI offers a method in which models of cancer and disease can be studied for the use in early-stage drug development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Li H, Hummon AB (2011) Imaging mass spectrometry of three-dimensional cell culture systems. Anal Chem 83(22):8794–8801

    Article  CAS  PubMed  Google Scholar 

  2. Tucker LH et al (2019) Untargeted metabolite mapping in 3D cell culture models using high spectral resolution FT-ICR mass spectrometry imaging. Anal Chem 91(15):9522–9529

    Article  CAS  PubMed  Google Scholar 

  3. Robison HM et al (2020) Identification of lipid biomarkers of metastatic potential and gene expression (HER2/p53) in human breast cancer cell cultures using ambient mass spectrometry. Anal Bioanal Chem 412(12):2949–2961

    Article  CAS  PubMed  Google Scholar 

  4. Zang Q et al (2021) Spatially resolved metabolomics combined with multicellular tumor spheroids to discover cancer tissue relevant metabolic signatures. Anal Chim Acta 1155:338342

    Article  CAS  PubMed  Google Scholar 

  5. Flint LE et al (2021) Comparison of osteosarcoma aggregated tumour models with human tissue by multimodal mass spectrometry imaging. Meta 11(8)

    Google Scholar 

  6. Bergmann S et al (2018) Blood-brain-barrier organoids for investigating the permeability of CNS therapeutics. Nat Protoc 13(12):2827–2843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. LaBonia GJ et al (2018) iTRAQ quantitative proteomic profiling and MALDI-MSI of colon cancer spheroids treated with combination chemotherapies in a 3D printed fluidic device. Anal Chem 90(2):1423–1430

    Article  CAS  PubMed  Google Scholar 

  8. Liu X et al (2018) MALDI mass spectrometry imaging for evaluation of therapeutics in colorectal tumor organoids. J Am Soc Mass Spectrom 29(3):516–526

    Article  CAS  PubMed  Google Scholar 

  9. Liu X, Weaver EM, Hummon AB (2013) Evaluation of therapeutics in three-dimensional cell culture systems by MALDI imaging mass spectrometry. Anal Chem 85(13):6295–6302

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. PalubeckaitÄ— I et al (2020) Mass spectrometry imaging of endogenous metabolites in response to doxorubicin in a novel 3D osteosarcoma cell culture model. J Mass Spectrom 55(4):e4461

    Article  PubMed  Google Scholar 

  11. Theiner S et al (2017) Fast high-resolution laser ablation-inductively coupled plasma mass spectrometry imaging of the distribution of platinum-based anticancer compounds in multicellular tumor spheroids. Anal Chem 89(23):12641–12645

    Article  CAS  PubMed  Google Scholar 

  12. Takáts Z et al (2004) Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science 306(5695):471–473

    Article  PubMed  Google Scholar 

  13. Banerjee S et al (2017) Diagnosis of prostate cancer by desorption electrospray ionization mass spectrometric imaging of small metabolites and lipids. Diagnosis of prostate cancer by desorption electrospray ionization mass spectrometric imaging of small metabolites and lipids 114(13):3334–3339

    CAS  Google Scholar 

  14. Guenther S et al (2015) Spatially resolved metabolic phenotyping of breast cancer by desorption electrospray ionization mass spectrometry. Cancer Res 75(9):1828–1837

    Article  CAS  PubMed  Google Scholar 

  15. Santoro AL et al (2020) In situ DESI-MSI Lipidomic profiles of breast cancer molecular subtypes and precursor lesions. Cancer Res 80(6):1246–1257

    Article  CAS  PubMed  Google Scholar 

  16. Lear J et al (2012) High-Resolution Elemental Bioimaging of Ca, Mn, Fe, Co, Cu, and Zn Employing LA-ICP-MS and Hydrogen Reaction Gas. Anal Chem 84(15):6707–6714

    Google Scholar 

  17. Voloaca OM et al (2020) Laser ablation inductively coupled plasma mass spectrometry as a novel clinical imaging tool to detect asbestos fibres in malignant mesothelioma. Laser ablation inductively coupled plasma mass spectrometry as a novel clinical imaging tool to detect asbestos fibres in malignant mesothelioma 34(21):e8906

    CAS  Google Scholar 

  18. Chang Q et al (2017) Imaging Mass. Cytometry 91(2):160–169

    Article  PubMed  Google Scholar 

  19. Kuett L et al (2022) Three-dimensional imaging mass cytometry for highly multiplexed molecular and cellular mapping of tissues and the tumor microenvironment. Nature Cancer 3(1):122–133

    Article  CAS  PubMed  Google Scholar 

  20. Buchberger AR et al (2018) Mass spectrometry imaging: a review of emerging advancements and future insights. Anal Chem 90(1):240–265

    Article  CAS  PubMed  Google Scholar 

  21. Goodwin RJ, Pitt AR (2010) Mass spectrometry imaging of pharmacological compounds in tissue sections. Bioanalysis 2(2):279–293

    Article  CAS  PubMed  Google Scholar 

  22. Wang Y, Hummon AB (2021) MS imaging of multicellular tumor spheroids and organoids as an emerging tool for personalized medicine and drug discovery. J Biol Chem 297(4):101139

    Article  PubMed  PubMed Central  Google Scholar 

  23. Breslin S, O’Driscoll L (2016) The relevance of using 3D cell cultures, in addition to 2D monolayer cultures, when evaluating breast cancer drug sensitivity and resistance. Oncotarget 7(29):45745–45756

    Article  PubMed  PubMed Central  Google Scholar 

  24. Cukierman E et al (2001) Taking cell-matrix adhesions to the third dimension. Science 294(5547):1708–1712

    Article  CAS  PubMed  Google Scholar 

  25. Bassi G et al (2020) Scaffold-based 3D cellular models mimicking the heterogeneity of osteosarcoma stem cell niche. Sci Rep 10(1):22294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Doyle AD et al (2015) Local 3D matrix microenvironment regulates cell migration through spatiotemporal dynamics of contractility-dependent adhesions. Nat Commun 6(1):8720

    Article  CAS  PubMed  Google Scholar 

  27. Johnson J et al (2020) Sample preparation strategies for high-throughput mass spectrometry imaging of primary tumor organoids. Sample preparation strategies for high-throughput mass spectrometry imaging of primary tumor organoids 55(4):e4452

    CAS  Google Scholar 

  28. Schwartz SA, Reyzer ML, Caprioli RM (2003) Direct tissue analysis using matrix-assisted laser desorption/ionization mass spectrometry: practical aspects of sample preparation. J Mass Spectrom 38(7):699–708

    Article  CAS  PubMed  Google Scholar 

  29. Dannhorn A et al (2020) Universal sample preparation unlocking multimodal molecular tissue imaging. Anal Chem 92(16):11080–11088

    Article  CAS  PubMed  Google Scholar 

  30. Gill EL et al (2017) Precast gelatin-based molds for tissue embedding compatible with mass spectrometry imaging. Anal Chem 89(1):576–580

    Article  CAS  PubMed  Google Scholar 

  31. Swales JG et al (2018) Quantitation of endogenous metabolites in mouse tumors using mass-spectrometry imaging. Anal Chem 90(10):6051–6058

    Article  CAS  PubMed  Google Scholar 

  32. Flint LE et al (2020) Characterization of an aggregated three-dimensional cell culture model by multimodal mass spectrometry imaging. Anal Chem 92(18):12538–12547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Palubeckaite, I.C., L.; Smith, D.P.; Cole, L.M.; Bram, H.; Le Maitre, C.; Clench, M. R.; Cross, N.A; , Mass spectrometry imaging of endogenous metabolites in response to doxorubicin in a novel 3D osteosarcoma cell culture model. J Mass Spectrom, 2019. 55(4): p. e4461

    Google Scholar 

  34. McQuin C et al (2018) CellProfiler 3.0: Next-generation image processing for biology. PLoS Biol 16(7):e2005970

    Google Scholar 

  35. Berg S et al (2019) Ilastik: interactive machine learning for (bio)image analysis. Nat Methods 16(12):1226–1232

    Article  CAS  PubMed  Google Scholar 

  36. Seaman C (2017) Laser ablation inductively coupled plasma mass spectrometry imaging of plant metabolites. Methods Mol Biol 1618:125–135

    Article  CAS  PubMed  Google Scholar 

  37. Weiskirchen R et al (2019) Software solutions for evaluation and visualization of laser ablation inductively coupled plasma mass spectrometry imaging (LA-ICP-MSI) data: a short overview. J Chem 11(1):16

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucy Flint .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Flint, L. (2023). Multimodal Mass Spectrometry Imaging of an Aggregated 3D Cell Culture Model. In: Cole, L.M., Clench, M.R. (eds) Imaging Mass Spectrometry. Methods in Molecular Biology, vol 2688. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3319-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3319-9_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3318-2

  • Online ISBN: 978-1-0716-3319-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics