Skip to main content

Genome-Wide CRISPR Screening for the Identification of Therapy Resistance-Associated Genes in Urothelial Carcinoma

  • Protocol
  • First Online:
Urothelial Carcinoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2684))

  • 640 Accesses

Abstract

The application of CRISPR (clustered regularly interspaced short palindromic repeats)-Cas9 technology with pooled guide RNA libraries enables genome-wide screening, which has some advantages over other screening methods using chemical DNA mutagens for inducing genetic changes, RNA interference, or arrayed screens. Here we describe the use of genome-wide knockout and transcriptional activation screening enabling the CRISPR-Cas9 system to discover resistance mechanisms to CDK4/6 inhibition in bladder cancer along with next-generation sequencing (NGS) analysis. We will describe the approach for transcriptional activation in the bladder cancer cell line T24 and provide guidance on critical points during the experimental workflow.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Doudna JA, Charpentier E (2014) Genome editing. The new frontier of genome engineering with CRISPR-Cas9. Science 346:1258096

    Article  PubMed  Google Scholar 

  2. Chavez A, Tuttle M, Pruitt BW et al (2016) Comparison of Cas9 activators in multiple species. Nat Methods 13:563–567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Shalem O, Sanjana NE, Zhang F (2015) High-throughput functional genomics using CRISPR-Cas9. Nat Rev Genet 16:299–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Li Y, Zhang Y, Li X et al (2019) Gain-of-function mutations: an emerging advantage for cancer biology. Trends Biochem Sci 44:659–674

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Joung J, Konermann S, Gootenberg JS et al (2017) Genome-scale CRISPR-Cas9 knockout and transcriptional activation screening. Nat Protoc 12:828–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Thomsen EA, Mikkelsen JG (2019) CRISPR-based lentiviral knockout libraries for functional genomic screening and identification of phenotype-related genes. Methods Mol Biol 1961:343–357

    Article  CAS  PubMed  Google Scholar 

  7. Tong Z, Sathe A, Ebner B et al (2019) Functional genomics identifies predictive markers and clinically actionable resistance mechanisms to CDK4/6 inhibition in bladder cancer. J Exp Clin Cancer Res 38:322

    Article  PubMed  PubMed Central  Google Scholar 

  8. Sathe A, Koshy N, Schmid SC et al (2016) CDK4/6 inhibition controls proliferation of bladder cancer and transcription of RB1. J Urol 195:771–779

    Article  CAS  PubMed  Google Scholar 

  9. DuBridge RB, Tang P, Hsia HC et al (1987) Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Mol Cell Biol 7:379–387

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Sanjana NE, Shalem O, Zhang F (2014) Improved vectors and genome-wide libraries for CRISPR screening. Nat Methods 11:783–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Konermann S, Brigham MD, Trevino AE et al (2015) Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517:583–588

    Article  CAS  PubMed  Google Scholar 

  12. Shalem O, Sanjana NE, Hartenian E et al (2014) Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:84–87

    Article  CAS  PubMed  Google Scholar 

  13. Fu Y, Foden JA, Khayter C et al (2013) High-frequency off-target mutagenesis induced by CRISPR-Cas nucleases in human cells. Nat Biotechnol 31:822–826

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Hsu PD, Scott DA, Weinstein JA et al (2013) DNA targeting specificity of RNA-guided Cas9 nucleases. Nat Biotechnol 31:827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Evers B, Jastrzebski K, Heijmans JP et al (2016) CRISPR knockout screening outperforms shRNA and CRISPRi in identifying essential genes. Nat Biotechnol 34:631–633

    Article  CAS  PubMed  Google Scholar 

  16. Pattanayak V, Lin S, Guilinger JP et al (2013) High-throughput profiling of off-target DNA cleavage reveals RNA-programmed Cas9 nuclease specificity. Nat Biotechnol 31:839–843

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Hinze L, Pfirrmann M, Karim S et al (2019) Synthetic lethality of Wnt pathway activation and Asparaginase in drug-resistant acute Leukemias. Cancer Cell 35(664–676):e667

    Google Scholar 

  18. Yau EH, Rana TM (2018) Next-generation sequencing of genome-wide CRISPR screens. Methods Mol Biol 1712:203–216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Li B, Clohisey SM, Chia BS et al (2020) Genome-wide CRISPR screen identifies host dependency factors for influenza a virus infection. Nat Commun 11:164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Vannucci L, Lai M, Chiuppesi F et al (2013) Viral vectors: a look back and ahead on gene transfer technology. New Microbiol 36:1–22

    CAS  PubMed  Google Scholar 

  21. Rayner E, Durin MA, Thomas R et al (2019) CRISPR-Cas9 causes chromosomal instability and rearrangements in cancer cell lines, detectable by cytogenetic methods. CRISPR J 2:406–416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Wang T, Birsoy K, Hughes NW et al (2015) Identification and characterization of essential genes in the human genome. Science 350:1096–1101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Munoz DM, Cassiani PJ, Li L et al (2016) CRISPR screens provide a comprehensive assessment of cancer vulnerabilities but generate false-positive hits for highly amplified genomic regions. Cancer Discov 6:900–913

    Article  CAS  PubMed  Google Scholar 

  24. Aguirre AJ, Meyers RM, Weir BA et al (2016) Genomic copy number dictates a gene-independent cell response to CRISPR/Cas9 targeting. Cancer Discov 6:914–929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Doench JG (2018) Am I ready for CRISPR? A user's guide to genetic screens. Nat Rev Genet 19:67–80

    Article  CAS  PubMed  Google Scholar 

  26. Gilbert LA, Horlbeck MA, Adamson B et al (2014) Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:647–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank Anuja Sathe and Zhichao Tong for their contribution to the preparation of this protocol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roman Nawroth .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mantwill, K., Nawroth, R. (2023). Genome-Wide CRISPR Screening for the Identification of Therapy Resistance-Associated Genes in Urothelial Carcinoma. In: Hoffmann, M.J., Gaisa, N.T., Nawroth, R., Ecke, T.H. (eds) Urothelial Carcinoma. Methods in Molecular Biology, vol 2684. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3291-8_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3291-8_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3290-1

  • Online ISBN: 978-1-0716-3291-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics