Skip to main content

Using Sister Chromatid Exchange Assay to Detect Homologous Recombination Deficiency in Epigenetically Deregulated Urothelial Carcinoma Cells

  • Protocol
  • First Online:
Urothelial Carcinoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2684))

  • 540 Accesses

Abstract

Sister chromatid exchange (SCE) is the process of exchanging regions between two sister chromatids during DNA replication. Exchanges between replicated chromatids and their sisters can be visualized in cells when DNA synthesis in one chromatid is labelled by 5-bromo-2’-deoxyuridine (BrdU). Homologous recombination (HR) is considered as the principal mechanism responsible for the sister chromatid exchange (SCE) upon replication fork collapse, and therefore SCE frequency upon genotoxic conditions reflects the capacity of HR repair to respond to replication stress. During tumorigenesis, inactivating mutations or altered transcriptome can affect a plethora of epigenetic factors that participate in DNA repair processes, and there are an increasing number of reports which demonstrate a link between epigenetic deregulation in cancer and homologous recombination deficiency (HRD). Therefore, the SCE assay can provide valuable information regarding the HR functionality in tumors with epigenetic deficiencies. In this chapter, we provide a method to visualize SCEs. The technique outlined below is characterized by high sensitivity and specificity and has been successfully applied to human bladder cancer cell lines. In this context, this technique could be used to characterize the dynamics of HR repair in tumors with deregulated epigenome.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Berti M, Vindigni A (2016) Replication stress: getting back on track. Nat Struct Mol Biol 23(2):103–109. https://doi.org/10.1038/nsmb.3163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Zeman MK, Cimprich KA (2014) Causes and consequences of replication stress. Nat Cell Biol 16(1):2–9. https://doi.org/10.1038/ncb2897

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Saleh-Gohari N, Bryant HE, Schultz N et al (2005) Spontaneous homologous recombination is induced by collapsed replication forks that are caused by endogenous DNA single-strand breaks. Mol Cell Biol 25(16):7158–7169. https://doi.org/10.1128/MCB.25.16.7158-7169.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Iraqui I, Chekkal Y, Jmari N et al (2012) Recovery of arrested replication forks by homologous recombination is error-prone. PLoS Genet 8(10):e1002976. https://doi.org/10.1371/journal.pgen.1002976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Arnaudeau C, Lundin C, Helleday T (2001) DNA double-strand breaks associated with replication forks are predominantly repaired by homologous recombination involving an exchange mechanism in mammalian cells. J Mol Biol 307(5):1235–1245. https://doi.org/10.1006/jmbi.2001.4564

    Article  CAS  PubMed  Google Scholar 

  6. Costanzo V (2011) Brca2, Rad51 and Mre11: performing balancing acts on replication forks. DNA Repair (Amst) 10(10):1060–1065. https://doi.org/10.1016/j.dnarep.2011.07.009

    Article  CAS  PubMed  Google Scholar 

  7. Kolinjivadi AM, Sannino V, de Antoni A et al (2017) Moonlighting at replication forks - a new life for homologous recombination proteins BRCA1, BRCA2 and RAD51. FEBS Lett 591(8):1083–1100. https://doi.org/10.1002/1873-3468.12556

    Article  CAS  PubMed  Google Scholar 

  8. Waisertreiger I, Popovich K, Block M et al (2020) Visualizing locus-specific sister chromatid exchange reveals differential patterns of replication stress-induced fragile site breakage. Oncogene 39(6):1260–1272. https://doi.org/10.1038/s41388-019-1054-5

    Article  CAS  PubMed  Google Scholar 

  9. Daley JM, Gaines WA, Kwon Y et al (2014) Regulation of DNA pairing in homologous recombination. Cold Spring Harb Perspect Biol 6(11):a017954. https://doi.org/10.1101/cshperspect.a017954

    Article  PubMed  PubMed Central  Google Scholar 

  10. Sonoda E, Sasaki MS, Morrison C et al (1999) Sister chromatid exchanges are mediated by homologous recombination in vertebrate cells. Mol Cell Biol 19(7):5166–5169. https://doi.org/10.1128/MCB.19.7.5166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Guo RB, Rigolet P, Zargarian L et al (2005) Structural and functional characterizations reveal the importance of a zinc binding domain in Bloom's syndrome helicase. Nucleic Acids Res 33(10):3109–3124. https://doi.org/10.1093/nar/gki619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Takata M, Sasaki MS, Tachiiri S et al (2001) Chromosome instability and defective recombinational repair in knockout mutants of the five Rad51 paralogs. Mol Cell Biol 21(8):2858–2866. https://doi.org/10.1128/MCB.21.8.2858-2866.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hatanaka A, Yamazoe M, Sale JE et al (2005) Similar effects of Brca2 truncation and Rad51 paralog deficiency on immunoglobulin V gene diversification in DT40 cells support an early role for Rad51 paralogs in homologous recombination. Mol Cell Biol 25(3):1124–1134. https://doi.org/10.1128/MCB.25.3.1124-1134.2005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Yonetani Y, Hochegger H, Sonoda E et al (2005) Differential and collaborative actions of Rad51 paralog proteins in cellular response to DNA damage. Nucleic Acids Res 33(14):4544–4552. https://doi.org/10.1093/nar/gki766

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Nagasawa H, Peng Y, Wilson PF et al (2005) Role of homologous recombination in the alpha-particle-induced bystander effect for sister chromatid exchanges and chromosomal aberrations. Radiat Res 164(2):141–147. https://doi.org/10.1667/rr3420

    Article  CAS  PubMed  Google Scholar 

  16. Wojcik A, Bochenek A, Lankoff A et al (2006) DNA interstrand crosslinks are induced in cells prelabelled with 5-bromo-2′-deoxyuridine and exposed to UVC radiation. J Photochem Photobiol B 84(1):15–20. https://doi.org/10.1016/j.jphotobiol.2006.01.008

    Article  CAS  PubMed  Google Scholar 

  17. Wilson DM 3rd, Thompson LH (2007) Molecular mechanisms of sister-chromatid exchange. Mutat Res 616(1–2):11–23. https://doi.org/10.1016/j.mrfmmm.2006.11.017

    Article  CAS  PubMed  Google Scholar 

  18. Rosenstein BS, Setlow RB, Ahmed FE (1980) Use of the dye Hoechst 33258 in a modification of the bromodeoxyuridine photolysis technique for the analysis of DNA repair. Photochem Photobiol 31(3):215–222. https://doi.org/10.1111/j.1751-1097.1980.tb03710.x

    Article  CAS  PubMed  Google Scholar 

  19. Karakaidos P, Karagiannis D, Rampias T (2020) Resolving DNA damage: epigenetic regulation of DNA repair. Molecules 25(11). https://doi.org/10.3390/molecules25112496

  20. Agbleke AA, Amitai A, Buenrostro JD et al (2020) Advances in chromatin and chromosome research: perspectives from multiple fields. Mol Cell 79(6):881–901. https://doi.org/10.1016/j.molcel.2020.07.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kandoth C, McLellan MD, Vandin F et al (2013) Mutational landscape and significance across 12 major cancer types. Nature 502(7471):333–339. https://doi.org/10.1038/nature12634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Cancer Genome Atlas Research N (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507(7492):315–322. https://doi.org/10.1038/nature12965

    Article  CAS  Google Scholar 

  23. Rampias T, Karagiannis D, Avgeris M et al (2019) The lysine-specific methyltransferase KMT2C/MLL3 regulates DNA repair components in cancer. EMBO Rep 20(3). https://doi.org/10.15252/embr.201846821

  24. Wang LH, Aberin MAE, Wu S et al (2021) The MLL3/4 H3K4 methyltransferase complex in establishing an active enhancer landscape. Biochem Soc Trans 49(3):1041–1054. https://doi.org/10.1042/BST20191164

    Article  PubMed  PubMed Central  Google Scholar 

  25. Ray Chaudhuri A, Callen E, Ding X et al (2016) Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535(7612):382–387. https://doi.org/10.1038/nature18325

    Article  CAS  PubMed  Google Scholar 

  26. Chang A, Liu L, Ashby JM et al (2021) Recruitment of KMT2C/MLL3 to DNA damage sites mediates DNA damage responses and regulates PARP inhibitor sensitivity in cancer. Cancer Res 81(12):3358–3373. https://doi.org/10.1158/0008-5472.CAN-21-0688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Hu X, Biswas A, De S (2022) KMT2C-deficient tumors have elevated APOBEC mutagenesis and genomic instability in multiple cancers. NAR Cancer 4(3):zcac023. https://doi.org/10.1093/narcan/zcac023

    Article  PubMed  PubMed Central  Google Scholar 

  28. Wiencke JK, Cervenka J, Kennedy BJ et al (1982) Sister-chromatid exchange induction by cis-platinum/adriamycin cancer chemotherapy. Mutat Res 104(1–3):131–136. https://doi.org/10.1016/0165-7992(82)90133-6

    Article  CAS  PubMed  Google Scholar 

  29. Tofilon PJ, Williams ME, Barcellos MH et al (1983) Comparison of the sister chromatid exchange and cell survival assays as a measure of tumor cell sensitivity in vitro to cis-diamminedichloroplatinum (II). Cancer Res 43(8):3511–3513

    CAS  PubMed  Google Scholar 

  30. Conrad S, Kunzel J, Lobrich M (2011) Sister chromatid exchanges occur in G2-irradiated cells. Cell Cycle 10(2):222–228. https://doi.org/10.4161/cc.10.2.14639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The authors apologize to all colleagues whose important contributions were not cited.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Theodoros Rampias or Apostolos Klinakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Rampias, T., Klinakis, A. (2023). Using Sister Chromatid Exchange Assay to Detect Homologous Recombination Deficiency in Epigenetically Deregulated Urothelial Carcinoma Cells. In: Hoffmann, M.J., Gaisa, N.T., Nawroth, R., Ecke, T.H. (eds) Urothelial Carcinoma. Methods in Molecular Biology, vol 2684. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3291-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3291-8_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3290-1

  • Online ISBN: 978-1-0716-3291-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics