Skip to main content

Characterization of Native COMPASS Complex in Urothelial Carcinoma Cells by Size Exclusion Chromatography

  • Protocol
  • First Online:
Urothelial Carcinoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2684))

  • 608 Accesses

Abstract

The human COMPASS complexes regulate gene expression during development and cell differentiation. Three distinct subunits, KMT2C, KMT2D, and KDM6A (also known as UTX), are frequently mutated in urothelial carcinoma, possibly disrupting the formation of functional COMPASS complexes. Here, we describe methods to evaluate the formation of these large native protein complexes in urothelial carcinoma (UC) cell lines harboring different mutations in KMT2C/D. To this end COMPASS complexes were purified from nuclear extracts by size exclusion chromatography (SEC) using a Sepharose 6 column. SEC fractions were then separated by 3–8% Tris–acetate gradient polyacrylamide gel and the COMPASS complex subunits KMT2C, UTX, WDR5, and RBBP5 were detected by immunoblotting. In this fashion, the formation of a COMPASS complex could be observed in UC cells with wild-type but not in cells with mutant KMT2C and KMTD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bannister A, Kouzarides T (2011) Regulation of chromatin by histone modifications. Cell Res 21:381–395. https://doi.org/10.1038/cr.2011.22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Miller T, Krogan N, Dover J et al (2001) COMPASS: a complex of proteins associated with a trithorax-related SET domain protein, Proc Natl Acad Sci USA. 6:12902–12907. https://doi.org/10.1073/pnas.231473398

  3. Ford D, Dingwall A (2015) The cancer COMPASS: navigating the functions of MLL complexes in cancer. Cancer Genet 208:178–191. https://doi.org/10.1016/j.cancergen.2015.01.005

    Article  CAS  PubMed  Google Scholar 

  4. Lavery W, Barski A, Wiley S et al (2020) KMT2C/D COMPASS complex-associated diseases [KCDCOM-ADs]: an emerging class of congenital regulopathies. Clin Epigenetics 12:10. https://doi.org/10.1186/s13148-019-0802-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Meeks J, Shilatifard A (2017) Multiple roles for the MLL/COMPASS family in the epigenetic regulation of gene expression and in cancer. Ann Rev Cancer Biol 1:425–446. https://doi.org/10.1146/annurev-cancerbio-050216-034333

    Article  Google Scholar 

  6. Schulz W, Lang A, Koch J et al (2019) The histone demethylase UTX/KDM6A in cancer: Progress and puzzles. 1:614–620. https://doi.org/10.1002/ijc.32116

  7. Nickerson M, Witte N, Im K et al (2017) Molecular analysis of urothelial cancer cell lines for modeling tumor biology and drug response. Oncogene 5:35–46. https://doi.org/10.1038/onc.2016.172

    Article  CAS  Google Scholar 

  8. Kirkwood K, Ahmad Y, Larance M et al (2013) Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics. Mol Cell Proteomics 12:3851–3873. https://doi.org/10.1074/mcp.M113.032367

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bergendahl LT, Gerasimavicius L, Miles J et al (2019) The role of protein complexes in human genetic disease. Protein Sci 28:1400–1411. https://doi.org/10.1002/pro.3667

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Fraser HB, Plotkin JB (2007) Using protein complexes to predict phenotypic effects of gene mutation. Genome Biol. 8. https://doi.org/10.1186/gb-2007-8-11-r252

  11. Brender JR, Zhang Y (2015) Predicting the effect of mutations on protein-protein binding interactions through structure-based interface profiles 11:e1004494. https://doi.org/10.1371/journal.pcbi.1004494

  12. de Araújo ME, Huber LA (2007) Subcellular fractionation 357:73–85. https://doi.org/10.1385/1-59745-214-9:73

  13. Holden P, Horton WA (2009) Crude subcellular fractionation of cultured mammalian cell lines 2:243. https://doi.org/10.1186/1756-0500-2-243

  14. Dimauro I, Pearson T, Caporossi D, et al (2012) A simple protocol for the subcellular fractionation of skeletal muscle cells and tissue 5:513. https://doi.org/10.1186/1756-0500-5-513

  15. Cox B, Emili A (2006) Tissue subcellular fractionation and protein extraction for use in mass-spectrometry-based proteomics 1:1872–1878. https://doi.org/10.1038/nprot.2006.273

  16. Fossati A, Frommelt F, Uliana F et al (2021) System-wide profiling of protein complexes via size exclusion chromatography-mass spectrometry (SEC-MS) 2259:269–294. https://doi.org/10.1007/978-1-0716-1178-4_18

    Article  CAS  Google Scholar 

  17. Mayer CL, Snyder WK, Swietlicka MA et al (2009) Size-exclusion chromatography can identify faster-associating protein complexes and evaluate design strategies 2:135. https://doi.org/10.1186/1756-0500-2-135

    Article  CAS  Google Scholar 

  18. Ren C, Bailey AO, VanderPorten E et al (2019) Quantitative determination of protein–ligand affinity by size exclusion chromatography directly coupled to high-resolution native mass spectrometry 91:903–911. https://doi.org/10.1021/acs.analchem.8b03829

    Article  CAS  Google Scholar 

  19. Walker JM (1984) Gradient SDS polyacrylamide gel electrophoresis 1:57–61. https://doi.org/10.1385/0-89603-062-8:57

    Article  CAS  Google Scholar 

  20. Cubillos-Rojas M, Amair-Pinedo F (2012) Tato I, et al. Tris-acetate polyacrylamide gradient gels for the simultaneous electrophoretic analysis of proteins of very high and low molecular mass 869:205–213. https://doi.org/10.1007/978-1-61779-821-4_17

    Article  CAS  Google Scholar 

  21. Lang A, Yilmaz M, Hader C, et al (2019) Contingencies of UTX/KDM6A action in urothelial carcinoma. 11:481. https://doi.org/10.3390/cancers11040481

Download references

Acknowledgments

This work was supported by the Wilhelm Sander Foundation (grant 2016.038.2). PW was supported by the DPST scholarship, Thailand.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patcharawalai Whongsiri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Peter, C., Schulz, W.A., Whongsiri, P. (2023). Characterization of Native COMPASS Complex in Urothelial Carcinoma Cells by Size Exclusion Chromatography. In: Hoffmann, M.J., Gaisa, N.T., Nawroth, R., Ecke, T.H. (eds) Urothelial Carcinoma. Methods in Molecular Biology, vol 2684. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3291-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3291-8_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3290-1

  • Online ISBN: 978-1-0716-3291-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics