Skip to main content

Predictive Biomarkers of Response to Neoadjuvant Therapy in Muscle Invasive Bladder Cancer

  • Protocol
  • First Online:
Urothelial Carcinoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2684))

  • 584 Accesses

Abstract

Neoadjuvant cisplatin-based chemotherapy is recommended prior to surgical removal of the bladder for patients with non-metastatic muscle invasive bladder cancer. Despite a survival benefit, approximately half of patients do not respond to chemotherapy and are exposed potentially unnecessarily to substantial toxicity and delay in surgery. Therefore, biomarkers to identify likely responders before initiating chemotherapy would be a helpful clinical tool. Furthermore, biomarkers may be able to identify patients who do not need subsequent surgery after clinical complete response to chemotherapy. To date, there are no clinically approved predictive biomarkers of response to neoadjuvant therapy. Recent advances in the molecular characterization of bladder cancer have shown the potential role for DNA damage repair (DDR) gene alterations and molecular subtypes to guide therapy, but these need validation from prospective clinical trials. This chapter reviews candidate predictive biomarkers of response to neoadjuvant therapy in muscle invasive bladder cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Stein JP, Lieskovsky G, Cote R et al (2001) Radical cystectomy in the treatment of invasive bladder cancer: long-term results in 1,054 patients. J Clin Oncol 19:666–675

    Article  CAS  PubMed  Google Scholar 

  2. Ghoneim MA, Abdel-Latif M, el-Mekresh M et al (2008) Radical cystectomy for carcinoma of the bladder: 2,720 consecutive cases 5 years later. J Urol 180:121–127

    Article  PubMed  Google Scholar 

  3. Witjes JA, Bruins HM, Cathomas R et al (2021) European Association of Urology guidelines on muscle-invasive and metastatic bladder cancer: summary of the 2020 guidelines. Eur Urol 79:82–104

    Article  CAS  PubMed  Google Scholar 

  4. Yin M, Joshi M, Meijer RP et al (2016) Neoadjuvant chemotherapy for muscle-invasive bladder cancer: a systematic review and two-step meta-analysis. Oncologist 21:708–715

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Advanced Bladder Cancer (ABC) Meta-analysis Collaboration (2005) Neoadjuvant chemotherapy in invasive bladder cancer: update of a systematic review and meta-analysis of individual patient data advanced bladder cancer (ABC) meta-analysis collaboration. Eur Urol 48:202–205. discussion 205–6

    Article  Google Scholar 

  6. Grossman HB, Natale RB, Tangen CM et al (2003) Neoadjuvant chemotherapy plus cystectomy compared with cystectomy alone for locally advanced bladder cancer. N Engl J Med 349:859–866

    Article  CAS  PubMed  Google Scholar 

  7. Zargar H, Espiritu PN, Fairey AS et al (2015) Multicenter assessment of neoadjuvant chemotherapy for muscle-invasive bladder cancer. Eur Urol 67:241–249

    Article  PubMed  Google Scholar 

  8. Bhindi B, Frank I, Mason RJ et al (2017) Oncologic outcomes for patients with residual cancer at cystectomy following neoadjuvant chemotherapy: a pathologic stage-matched analysis. Eur Urol 72:660–664

    Article  PubMed  Google Scholar 

  9. Becker REN, Meyer AR, Brant A et al (2021) Clinical restaging and tumor sequencing are inaccurate indicators of response to neoadjuvant chemotherapy for muscle-invasive bladder cancer. Eur Urol 79:364–371

    Article  CAS  PubMed  Google Scholar 

  10. Iyer G, Tully CM, Zabor EC et al (2020) Neoadjuvant gemcitabine-cisplatin plus radical cystectomy-pelvic lymph node dissection for muscle-invasive bladder cancer: a 12-year experience. Clin Genitourin Cancer 18:387–394

    Article  PubMed  PubMed Central  Google Scholar 

  11. Yuh BE, Ruel N, Wilson TG et al (2013) Pooled analysis of clinical outcomes with neoadjuvant cisplatin and gemcitabine chemotherapy for muscle invasive bladder cancer. J Urol 189:1682–1686

    Article  CAS  PubMed  Google Scholar 

  12. Dash A, Pettus JA 4th, Herr HW et al (2008) A role for neoadjuvant gemcitabine plus cisplatin in muscle-invasive urothelial carcinoma of the bladder: a retrospective experience. Cancer 113:2471–2477

    Article  PubMed  Google Scholar 

  13. Lee FC, Harris W, Cheng HH et al (2013) Pathologic response rates of gemcitabine/cisplatin versus methotrexate/vinblastine/Adriamycin/cisplatin neoadjuvant chemotherapy for muscle invasive urothelial bladder cancer. Adv Urol 2013:317190

    Article  PubMed  PubMed Central  Google Scholar 

  14. Galsky MD, Pal SK, Chowdhury S et al (2015) Comparative effectiveness of gemcitabine plus cisplatin versus methotrexate, vinblastine, doxorubicin, plus cisplatin as neoadjuvant therapy for muscle-invasive bladder cancer. Cancer 121:2586–2593

    Article  CAS  PubMed  Google Scholar 

  15. Von Der Maase H, Sengelov L, Roberts JT et al (2005) Long-term survival results of a randomized trial comparing gemcitabine plus cisplatin, with methotrexate, vinblastine, doxorubicin, plus cisplatin in patients with bladder cancer. J Clin Oncol 23:4602–4608

    Article  PubMed  Google Scholar 

  16. Pfister C, Gravis G, Fléchon A et al (2022) Dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin or gemcitabine and cisplatin as perioperative chemotherapy for patients with nonmetastatic muscle-invasive bladder cancer: results of the GETUG-AFU V05 VESPER trial. J Clin Oncol 40:2013–2022

    Article  CAS  PubMed  Google Scholar 

  17. Millikan R, Dinney C, Swanson D et al (2001) Integrated therapy for locally advanced bladder cancer: final report of a randomized trial of cystectomy plus adjuvant M-VAC versus cystectomy with both preoperative and postoperative M-VAC. J Clin Oncol 19:4005–4013

    Article  CAS  PubMed  Google Scholar 

  18. Dasari S, Tchounwou PB (2014) Cisplatin in cancer therapy: molecular mechanisms of action. Eur J Pharmacol 740:364–378

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hoeijmakers JHJ (2009) DNA damage, aging, and cancer. N Engl J Med 361:1475–1485

    Article  CAS  PubMed  Google Scholar 

  20. Mullane SA, Werner L, Guancial EA et al (2016) Expression levels of DNA damage repair proteins are associated with overall survival in platinum-treated advanced urothelial carcinoma. Clin Genitourin Cancer 14:352–359

    Article  PubMed  Google Scholar 

  21. Bellmunt J, Paz-Ares L, Cuello M et al (2007) Gene expression of ERCC1 as a novel prognostic marker in advanced bladder cancer patients receiving cisplatin-based chemotherapy. Ann Oncol 18:522–528

    Article  CAS  PubMed  Google Scholar 

  22. Choueiri TK, Jacobus S, Bellmunt J et al (2014) Neoadjuvant dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with pegfilgrastim support in muscle-invasive urothelial cancer: pathologic, radiologic, and biomarker correlates. J Clin Oncol 32:1889–1894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Van Allen EM, Mouw KW, Kim P et al (2014) Somatic ERCC2 mutations correlate with cisplatin sensitivity in muscle-invasive urothelial carcinoma. Cancer Discov 4:1140–1153

    Article  PubMed  PubMed Central  Google Scholar 

  24. Weinstein JN, Akbani R, Broom BM et al (2014) Comprehensive molecular characterization of urothelial bladder carcinoma. Nature 507:315–322

    Article  CAS  Google Scholar 

  25. Liu D, Plimack ER, Hoffman-Censits J et al (2016) Clinical validation of chemotherapy response biomarker ERCC2 in muscle-invasive urothelial bladder carcinoma. JAMA Oncol 2:1094–1096

    Article  PubMed  PubMed Central  Google Scholar 

  26. Li Q, Damish AW, Frazier Z et al (2019) ERCC2 helicase domain mutations confer nucleotide excision repair deficiency and drive cisplatin sensitivity in muscle-invasive bladder cancer. Clin Cancer Res 25:977–988

    Article  CAS  PubMed  Google Scholar 

  27. Iyer G, Balar AV, Milowsky MI et al (2018) Multicenter prospective phase II trial of neoadjuvant dose-dense gemcitabine plus cisplatin in patients with muscle-invasive bladder cancer. J Clin Oncol 36:1949–1956

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Pietzak EJ, Zabor EC, Bagrodia A et al (2019) Genomic differences between “primary” and “secondary” muscle-invasive bladder cancer as a basis for disparate outcomes to cisplatin-based neoadjuvant chemotherapy. Eur Urol 75:231–239

    Article  PubMed  Google Scholar 

  29. Groenendijk FH, de Jong J, Fransen van de Putte EE et al (2016) ERBB2 mutations characterize a subgroup of muscle-invasive bladder cancers with excellent response to neoadjuvant chemotherapy. Eur Urol 69:384–388

    Article  CAS  PubMed  Google Scholar 

  30. Gil-Jimenez A, van Dorp J, Contreras-Sanz A et al (2022) Assessment of predictive genomic biomarkers for response to cisplatin-based neoadjuvant chemotherapy in bladder cancer. Eur Urol 83(4):313–317

    Article  PubMed  Google Scholar 

  31. Plimack ER, Dunbrack RL, Brennan TA et al (2015) Defects in DNA repair genes predict response to neoadjuvant cisplatin-based chemotherapy in muscle-invasive bladder cancer. Eur Urol 68:959–967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Shiloh Y, Ziv Y (2013) The ATM protein kinase: regulating the cellular response to genotoxic stress, and more. Nat Rev Mol Cell Biol 14:197–210

    Article  CAS  PubMed  Google Scholar 

  33. Huang PH, Cook R, Zoumpoulidou G et al (2016) Retinoblastoma family proteins: new players in DNA repair by non-homologous end-joining. Mol Cell Oncol 3:e1053596

    Article  PubMed  Google Scholar 

  34. Su X, Huang J (2011) The Fanconi anemia pathway and DNA interstrand cross-link repair. Protein Cell 2:704–711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Miron B, Hoffman-Censits JH, Anari F et al (2020) Defects in DNA repair genes confer improved long-term survival after cisplatin-based neoadjuvant chemotherapy for muscle-invasive bladder cancer. Eur Urol Oncol 3:544–547

    Article  PubMed  PubMed Central  Google Scholar 

  36. Teo MY, Bambury RM, Zabor EC et al (2017) DNA damage response and repair gene alterations are associated with improved survival in patients with platinum-treated advanced urothelial carcinoma. Clin Cancer Res 23:3610–3618

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Font A, Taron M, Gago JL et al (2011) BRCA1 mRNA expression and outcome to neoadjuvant cisplatin-based chemotherapy in bladder cancer. Ann Oncol 22:139–144

    Article  CAS  PubMed  Google Scholar 

  38. Kim KH, Do I-G, Kim HS et al (2010) Excision repair cross-complementation group 1 (ERCC1) expression in advanced urothelial carcinoma patients receiving cisplatin-based chemotherapy. APMIS 118:941–948

    Article  PubMed  Google Scholar 

  39. Choi W, Porten S, Kim S et al (2014) Identification of distinct basal and luminal subtypes of muscle-invasive bladder cancer with different sensitivities to frontline chemotherapy. Cancer Cell 25:152–165

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Damrauer JS, Hoadley KA, Chism DD et al (2014) Intrinsic subtypes of high-grade bladder cancer reflect the hallmarks of breast cancer biology. Proc Natl Acad Sci U S A 111:3110–3115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Robertson AG, Kim J, Al-Ahmadie H et al (2017) Comprehensive molecular characterization of muscle-invasive bladder cancer. Cell 171:540–556.e25

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Marzouka N-A-D, Eriksson P, Rovira C et al (2018) A validation and extended description of the Lund taxonomy for urothelial carcinoma using the TCGA cohort. Sci Rep 8:3737

    Article  PubMed  PubMed Central  Google Scholar 

  43. Rebouissou S, Bernard-Pierrot I, de Reyniès A et al (2014) EGFR as a potential therapeutic target for a subset of muscle-invasive bladder cancers presenting a basal-like phenotype. Sci Transl Med 6:244ra91

    Article  PubMed  Google Scholar 

  44. Sjödahl G, Lauss M, Lövgren K et al (2012) A molecular taxonomy for urothelial carcinoma. Clin Cancer Res 18:3377–3386

    Article  PubMed  Google Scholar 

  45. Dyrskjøt L, Thykjaer T, Kruhøffer M et al (2003) Identifying distinct classes of bladder carcinoma using microarrays. Nat Genet 33:90–96

    Article  PubMed  Google Scholar 

  46. Volkmer J-P, Sahoo D, Chin RK et al (2012) Three differentiation states risk-stratify bladder cancer into distinct subtypes. Proc Natl Acad Sci U S A 109:2078–2083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Kamoun A, de Reyniès A, Allory Y et al (2020) A consensus molecular classification of muscle-invasive bladder cancer. Eur Urol 77:420–433

    Article  PubMed  Google Scholar 

  48. Dadhania V, Zhang M, Zhang L et al (2016) Meta-analysis of the luminal and basal subtypes of bladder cancer and the identification of signature immunohistochemical markers for clinical use. EBioMedicine 12:105–117

    Article  PubMed  PubMed Central  Google Scholar 

  49. Lotan Y, Boorjian SA, Zhang J et al (2019) Molecular subtyping of clinically localized urothelial carcinoma reveals lower rates of pathological upstaging at radical cystectomy among luminal tumors. Eur Urol 76:200–206

    Article  PubMed  Google Scholar 

  50. McConkey DJ, Choi W, Shen Y et al (2016) A prognostic gene expression signature in the molecular classification of chemotherapy-naïve urothelial cancer is predictive of clinical outcomes from neoadjuvant chemotherapy: a phase 2 trial of dose-dense methotrexate, vinblastine, doxorubicin, and cisplatin with bevacizumab in urothelial cancer. Eur Urol 69:855–862

    Article  CAS  PubMed  Google Scholar 

  51. Van Der Heijden MS, Powles T, Petrylak D et al (2022) Predictive biomarkers for survival benefit with ramucirumab in urothelial cancer in the RANGE trial. Nat Commun 13:1878

    Article  PubMed  PubMed Central  Google Scholar 

  52. Seiler R, Ashab HAD, Erho N et al (2017) Impact of molecular subtypes in muscle-invasive bladder cancer on predicting response and survival after neoadjuvant chemotherapy. Eur Urol 72:544–554

    Article  CAS  PubMed  Google Scholar 

  53. Lotan Y, de Jong JJ, Liu VYT et al (2022) Patients with muscle-invasive bladder cancer with nonluminal subtype derive greatest benefit from platinum based neoadjuvant chemotherapy. J Urol 207:541–550

    Article  PubMed  Google Scholar 

  54. Sjödahl G, Abrahamsson J, Holmsten K et al (2022) Different responses to neoadjuvant chemotherapy in urothelial carcinoma molecular subtypes. Eur Urol 81:523–532

    Article  PubMed  Google Scholar 

  55. Taber A, Christensen E, Lamy P et al (2020) Molecular correlates of cisplatin-based chemotherapy response in muscle invasive bladder cancer by integrated multi-omics analysis. Nat Commun 11:4858

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. de Jong JJ, Gibb EA (2022) Re: Gottfrid Sjödahl, Johan Abrahamsson, Karin Holmsten, et al. Different responses to neoadjuvant chemotherapy in urothelial carcinoma molecular subtypes. Eur Urol. 2022;81:316-7.: Neoadjuvant chemotherapy response in muscle-invasive bladder cancer: differences in intrinsic biology or subtyping nomenclature? Eur Urol 81:e90–e91

    Article  PubMed  Google Scholar 

  57. Roumiguie M, Contreras-Sanz A, Kumar G et al (2021) Reconciling differences in impact of molecular subtyping on response to cisplatin-based chemotherapy. Nat Commun 12:4833

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Smith SC, Baras AS, Lee JK et al (2010) The COXEN principle: translating signatures of in vitro chemosensitivity into tools for clinical outcome prediction and drug discovery in cancer. Cancer Res 70:1753–1758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Flaig TW, Tangen CM, Daneshmand S et al (2021) A randomized phase II study of Coexpression extrapolation (COXEN) with neoadjuvant chemotherapy for bladder cancer (SWOG S1314; NCT02177695). Clin Cancer Res 27:2435–2441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Mooso BA, Vinall RL, Mudryj M et al (2015) The role of EGFR family inhibitors in muscle invasive bladder cancer: a review of clinical data and molecular evidence. J Urol 193:19–29

    Article  CAS  PubMed  Google Scholar 

  61. Powles T, Kockx M, Rodriguez-Vida A et al (2019) Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat Med 25:1706–1714

    Article  CAS  PubMed  Google Scholar 

  62. Mariathasan S, Turley SJ, Nickles D et al (2018) TGFβ attenuates tumour response to PD-L1 blockade by contributing to exclusion of T cells. Nature 554:544–548

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Necchi A, Raggi D, Gallina A et al (2020) Impact of molecular subtyping and immune infiltration on pathological response and outcome following neoadjuvant Pembrolizumab in muscle-invasive bladder cancer. Eur Urol 77:701–710

    Article  CAS  PubMed  Google Scholar 

  64. Bajorin DF, Witjes JA, Gschwend JE et al (2021) Adjuvant Nivolumab versus placebo in muscle-invasive urothelial carcinoma. N Engl J Med 384:2102–2114

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Necchi A, Anichini A, Raggi D et al (2018) Pembrolizumab as neoadjuvant therapy before radical cystectomy in patients with muscle-invasive urothelial bladder carcinoma (PURE-01): an open-label, single-arm, phase II study. J Clin Oncol 36:3353–3360

    Article  CAS  PubMed  Google Scholar 

  66. Bazargani ST, Clifford TG, Djaladat H et al (2019) Association between precystectomy epithelial tumor marker response to neoadjuvant chemotherapy and oncological outcomes in urothelial bladder cancer. Urol Oncol 37:1–11

    Article  PubMed  Google Scholar 

  67. Christensen E, Birkenkamp-Demtröder K, Sethi H et al (2019) Early detection of metastatic relapse and monitoring of therapeutic efficacy by ultra-deep sequencing of plasma cell-free DNA in patients with urothelial bladder carcinoma. J Clin Oncol 37:1547–1557

    Article  CAS  PubMed  Google Scholar 

  68. Christensen E, Nordentoft I, Birkenkamp-Demtröder K, et al (2023) Cell-Free Urine and Plasma DNA Mutational Analysis Predicts Neoadjuvant Chemotherapy Response and Outcome in Patients with Muscle-Invasive Bladder Cancer. Clin Cancer Res 29:1582–1591

    Google Scholar 

  69. Powles T, Assaf ZJ, Davarpanah N et al (2021) ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 595:432–437

    Article  CAS  PubMed  Google Scholar 

  70. Szabados B, Kockx M, Assaf ZJ et al (2022) Final results of neoadjuvant Atezolizumab in cisplatin-ineligible patients with muscle-invasive urothelial cancer of the bladder. Eur Urol 82:212–222

    Article  CAS  PubMed  Google Scholar 

  71. Geynisman DM, Abbosh P, Ross EA et al (2023) A phase II trial of risk-enabled therapy after initiating neoadjuvant chemotherapy for bladder cancer (RETAIN). J Clin Oncol 41:438

    Google Scholar 

  72. Iyer G, Ballman KV, Atherton PJ et al (2022) A phase II study of gemcitabine plus cisplatin chemotherapy in patients with muscle-invasive bladder cancer with bladder preservation for those patients whose tumors harbor deleterious DNA damage response (DDR) gene alterations (Alliance A031701). J Clin Oncol 40:TPS4615

    Article  Google Scholar 

  73. Galsky MD, Daneshmand S, Lewis SC et al (2021) Co-primary endpoint analysis of HCRN GU 16-257: Phase 2 trial of gemcitabine, cisplatin, plus nivolumab with selective bladder sparing in patients with muscle-invasive bladder cancer (MIBC). J Clin Oncol 41:447

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Black .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Nikkola, J., Black, P. (2023). Predictive Biomarkers of Response to Neoadjuvant Therapy in Muscle Invasive Bladder Cancer. In: Hoffmann, M.J., Gaisa, N.T., Nawroth, R., Ecke, T.H. (eds) Urothelial Carcinoma. Methods in Molecular Biology, vol 2684. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3291-8_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3291-8_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3290-1

  • Online ISBN: 978-1-0716-3291-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics