Skip to main content

Accessing Transient Binding Pockets by Protein Engineering and Yeast Surface Display Screening

  • Protocol
  • First Online:
Genotype Phenotype Coupling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2681))

  • 674 Accesses

Abstract

The binding pocket of some therapeutic targets can acquire multiple conformations that, to some extent, depend on the protein dynamics and the interaction with other molecules. The inability to reach the binding pocket can impose a substantial or even insurmountable barrier for the de novo identification or optimization of small-molecule ligands. Herein, we describe a protocol for the engineering of a target protein and a yeast display FACS sorting strategy to identify protein variants with a stable transient binding pocket with improved binding for a cryptic site-specific ligand. This strategy may facilitate drug discovery using the resulting protein variants with accessible binding pockets for ligand screening.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Laurie ATR, Jackson RM (2006) Methods for the prediction of protein-ligand binding sites for structure-based drug design and virtual ligand screening. Curr Protein Pept Sci 7:395–406

    Article  CAS  PubMed  Google Scholar 

  2. Gao M, Skolnick J (2013) A comprehensive survey of small-molecule binding pockets in proteins. PLoS Comput Biol 9:e1003302

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kokh DB, Czodrowski P, Rippmann F, Wade RC (2016) Perturbation approaches for exploring protein binding site flexibility to predict transient binding pockets. J Chem Theory Comput 12:4100–4113

    Article  CAS  PubMed  Google Scholar 

  4. Stank A, Kokh DB, Fuller JC, Wade RC (2016) Protein binding pocket dynamics. Acc Chem Res 49:809–815

    Article  CAS  PubMed  Google Scholar 

  5. Beglov D, Hall DR, Wakefield AE, Luo L, Allen KN, Kozakov D, Whitty A, Vajda S (2018) Exploring the structural origins of cryptic sites on proteins. Proc Natl Acad Sci 115:E3416–E3425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Durrant JD, McCammon JA (2011) Molecular dynamics simulations and drug discovery. BMC Biol 9:71

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Shan Y, Mysore VP, Leffler AE, Kim ET, Sagawa S, Shaw DE (2022) How does a small molecule bind at a cryptic binding site? PLoS Comput Biol 18:e1009817

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Arkin MR, Randal M, DeLano WL et al (2003) Binding of small molecules to an adaptive protein–protein interface. Proc Natl Acad Sci 100:1603–1608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Bowman GR, Geissler PL (2012) Equilibrium fluctuations of a single folded protein reveal a multitude of potential cryptic allosteric sites. PNAS. https://doi.org/10.1073/pnas.1209309109/-/DCSupplemental

  10. Huggins DJ, Sherman W, Tidor B (2012) Rational approaches to improving selectivity in drug design. J Med Chem 55:1424–1444

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Umezawa K, Kii I (2021) Druggable Transient Pockets in Protein Kinases. Molecules 26:651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Nussinov R, Ma B (2012) Protein dynamics and conformational selection in bidirectional signal transduction. BMC Biol 10:2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Eyrisch S, Helms V (2007) Transient pockets on protein surfaces involved in protein−protein interaction. J Med Chem 50:3457–3464

    Article  CAS  PubMed  Google Scholar 

  14. Kokh DB, Richter S, Henrich S, Czodrowski P, Rippmann F, Wade RC (2013) TRAPP: a tool for analysis of Transient binding Pockets in Proteins. J Chem Inf Model 53:1235–1252

    Article  CAS  PubMed  Google Scholar 

  15. Meiler J, Baker D (2006) ROSETTALIGAND: protein-small molecule docking with full side-chain flexibility. Proteins: Structure Function Bioinformatics 65:538–548

    Article  CAS  Google Scholar 

  16. Zacharias M (2004) Rapid protein-ligand docking using soft modes from molecular dynamics simulations to account for protein deformability: binding of FK506 to FKBP. Proteins: Structure, Function Bioinformatics 54:759–767

    Article  CAS  Google Scholar 

  17. Oleinikovas V, Saladino G, Cossins BP, Gervasio FL (2016) Understanding cryptic pocket formation in protein targets by enhanced sampling simulations. J Am Chem Soc 138:14257–14263

    Article  CAS  PubMed  Google Scholar 

  18. Kumar S, Ma B, Tsai C-J, Wolfson H, Nussinov R (1999) Folding funnels and conformational transitions via hinge-bending motions. Cell Biochem Biophys 31:141–164

    Article  CAS  PubMed  Google Scholar 

  19. Ma B, Kumar S, Tsai C-J, Nussinov R (1999) Folding funnels and binding mechanisms. Protein Eng Des Sel 12:713–720

    Article  CAS  Google Scholar 

  20. Teague SJ (2003) Implications of protein flexibility for drug discovery. Nat Rev Drug Discov 2:527–541

    Article  CAS  PubMed  Google Scholar 

  21. Rath VL, Ammirati M, Danley DE et al (2000) Human liver glycogen phosphorylase inhibitors bind at a new allosteric site. Chem Biol 7:677–682

    Article  CAS  PubMed  Google Scholar 

  22. Maun HR, Eigenbrot C, Lazarus RA (2003) Engineering exosite peptides for complete inhibition of factor VIIa using a protease switch with substrate phage. J Biol Chem 278:21823–21830

    Article  CAS  PubMed  Google Scholar 

  23. Hardy JA, Lam J, Nguyen JT, O’Brien T, Wells JA (2004) Discovery of an allosteric site in the caspases. Proc Natl Acad Sci 101:12461–12466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Braisted AC, Oslob JD, Delano WL, Hyde J, McDowell RS, Waal N, Yu C, Arkin MR, Raimundo BC (2003) Discovery of a potent small molecule IL-2 inhibitor through fragment assembly. J Am Chem Soc 125:3714–3715

    Article  CAS  PubMed  Google Scholar 

  25. Gaali S, Kirschner A, Cuboni S et al (2015) Selective inhibitors of the FK506-binding protein 51 by induced fit. Nat Chem Biol 11:33–37

    Article  CAS  PubMed  Google Scholar 

  26. Lerma Romero JA, Meyners C, Christmann A, Reinbold LM, Charalampidou A, Hausch F, Kolmar H (2022) Binding pocket stabilization by high-throughput screening of yeast display libraries. Front Mol Biosci. https://doi.org/10.3389/fmolb.2022.1023131

  27. Benatuil L, Perez JM, Belk J, Hsieh CM (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159

    Article  CAS  PubMed  Google Scholar 

  28. Bogen JP, Grzeschik J, Krah S, Zielonka S, Kolmar H (2020) Rapid generation of chicken immune libraries for yeast surface display. Methods Mol Biol 2070:289–302

    Google Scholar 

  29. Becker S, Schmoldt HU, Adams TM, Wilhelm S, Kolmar H (2004) Ultra-high-throughput screening based on cell-surface display and fluorescence-activated cell sorting for the identification of novel biocatalysts. Curr Opin Biotechnol 15:323–329

    Article  CAS  PubMed  Google Scholar 

  30. Benatuil L, Perez JM, Belk J, Hsieh C-M (2010) An improved yeast transformation method for the generation of very large human antibody libraries. Protein Eng Des Sel 23:155–159

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Harald Kolmar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lerma Romero, J.A., Kolmar, H. (2023). Accessing Transient Binding Pockets by Protein Engineering and Yeast Surface Display Screening. In: Zielonka, S., Krah, S. (eds) Genotype Phenotype Coupling. Methods in Molecular Biology, vol 2681. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3279-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3279-6_14

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3278-9

  • Online ISBN: 978-1-0716-3279-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics