Skip to main content

Animal Models of PTSD: The Role of Fear Conditioning

  • Protocol
  • First Online:
Translational Methods for PTSD Research

Part of the book series: Neuromethods ((NM,volume 198))

  • 273 Accesses

Abstract

Adverse situations that challenge an individual’s physical or psychological integrity are frequent throughout the lifespan. However, some situations go beyond the adaptive capacity and are considered traumatic, leading, in some individuals, to the development of post-traumatic stress disorder (PTSD), a condition characterized by persistent recollection of the trauma, avoidance of trauma-related cues, increased arousal, and fear generalization and sensitization. Some of these symptoms indicate that fear conditioning (cue or context-based) plays a major role in this disorder. Because individual variability is a major feature of PTSD, it is crucial to understand the psychological and biological factors that confer vulnerability and resilience to the development of this disorder. Animal models based on fear conditioning, which incorporates individual variability and sex differences, could, therefore, increase the translational value and validity of these models for testing of potential pharmacological and non-pharmacological treatments. In the present chapter, we will present the behavioral and neurobiological outcomes of animal models of PTSD based on paradigms of fear conditioning and the putative systems that may be involved with vulnerability and resilience. We will close the chapter by presenting the gaps in the literature and propose future directions on how to fill them in.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Yehuda R, Antelman SM (1993) Criteria for rationally evaluating animal models of posttraumatic stress disorder. Biol Psychiatry 33(7):479–486. https://doi.org/10.1016/0006-3223(93)90001-t

    Article  CAS  PubMed  Google Scholar 

  2. Siegmund A, Wotjak CT (2006) Toward an animal model of posttraumatic stress disorder. Ann N Y Acad Sci 1071:324–334. https://doi.org/10.1196/annals.1364.025

    Article  PubMed  Google Scholar 

  3. Kessler RC, Sonnega A, Bromet E, Hughes M, Nelson CB (1995) Posttraumatic stress disorder in the National Comorbidity Survey. Arch Gen Psychiatry 52(12):1048–1060. https://doi.org/10.1001/archpsyc.1995.03950240066012

    Article  CAS  PubMed  Google Scholar 

  4. Ditlevsen DN, Elklit A (2010) The combined effect of gender and age on post traumatic stress disorder: do men and women show differences in the lifespan distribution of the disorder? Ann General Psychiatry 9:32. https://doi.org/10.1186/1744-859X-9-32

    Article  Google Scholar 

  5. McLean CP, Asnaani A, Litz BT, Hofmann SG (2011) Gender differences in anxiety disorders: prevalence, course of illness, comorbidity and burden of illness. J Psychiatr Res 45(8):1027–1035. https://doi.org/10.1016/j.jpsychires.2011.03.006

    Article  PubMed  PubMed Central  Google Scholar 

  6. Pitman RK (1989) Post-traumatic stress disorder, hormones, and memory. Biol Psychiatry 26(3):221–223. https://doi.org/10.1016/0006-3223(89)90033-4

    Article  CAS  PubMed  Google Scholar 

  7. Pitman RK, Orr SP, Shalev AY (1993) Once bitten, twice shy: beyond the conditioning model of PTSD. Biol Psychiatry 33(3):145–146. https://doi.org/10.1016/0006-3223(93)90132-w

    Article  CAS  PubMed  Google Scholar 

  8. Elzinga BM, Bremner JD (2002) Are the neural substrates of memory the final common pathway in posttraumatic stress disorder (PTSD)? J Affect Disord 70(1):1–17. https://doi.org/10.1016/s0165-0327(01)00351-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Jovanovic T, Ressler KJ (2010) How the neurocircuitry and genetics of fear inhibition may inform our understanding of PTSD. Am J Psychiatry 167(6):648–662. https://doi.org/10.1176/appi.ajp.2009.09071074

    Article  PubMed  PubMed Central  Google Scholar 

  10. Cohen H, Zohar J, Matar M (2003) The relevance of differential response to trauma in an animal model of posttraumatic stress disorder. Biol Psychiatry 53(6):463–473

    Article  PubMed  Google Scholar 

  11. Cohen H, Zohar J, Matar MA, Zeev K, Loewenthal U, Richter-Levin G (2004) Setting apart the affected: the use of behavioral criteria in animal models of post traumatic stress disorder. Neuropsychopharmacology 29(11):1962–1970. https://doi.org/10.1038/sj.npp.1300523

    Article  PubMed  Google Scholar 

  12. Dopfel D, Perez PD, Verbitsky A, Bravo-Rivera H, Ma Y, Quirk GJ, Zhang N (2019) Individual variability in behavior and functional networks predicts vulnerability using an animal model of PTSD. Nat Commun 10(1):2372. https://doi.org/10.1038/s41467-019-09926-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zoladz PR, Conrad CD, Fleshner M, Diamond DM (2008) Acute episodes of predator exposure in conjunction with chronic social instability as an animal model of post-traumatic stress disorder. Stress 11(4):259–281. https://doi.org/10.1080/10253890701768613

    Article  PubMed  PubMed Central  Google Scholar 

  14. Zoladz PR, Fleshner M, Diamond DM (2012) Psychosocial animal model of PTSD produces a long-lasting traumatic memory, an increase in general anxiety and PTSD-like glucocorticoid abnormalities. Psychoneuroendocrinology 37(9):1531–1545. https://doi.org/10.1016/j.psyneuen.2012.02.007

    Article  CAS  PubMed  Google Scholar 

  15. Zoladz PR, Park CR, Fleshner M, Diamond DM (2015) Psychosocial predator-based animal model of PTSD produces physiological and behavioral sequelae and a traumatic memory four months following stress onset. Physiol Behav 147:183–192. https://doi.org/10.1016/j.physbeh.2015.04.032

    Article  CAS  PubMed  Google Scholar 

  16. Mendes-Gomes J, Paschoalin-Maurin T, Donaldson LF, Lumb BM, Blanchard DC, Coimbra NC (2020) Repeated exposure of naive and peripheral nerve-injured mice to a snake as an experimental model of post-traumatic stress disorder and its co-morbidity with neuropathic pain. Brain Res 1744:146907. https://doi.org/10.1016/j.brainres.2020.146907

    Article  CAS  PubMed  Google Scholar 

  17. Ardi Z, Albrecht A, Richter-Levin A, Saha R, Richter-Levin G (2016) Behavioral profiling as a translational approach in an animal model of posttraumatic stress disorder. Neurobiol Dis 88:139–147. https://doi.org/10.1016/j.nbd.2016.01.012

    Article  PubMed  Google Scholar 

  18. Ardi Z, Ritov G, Lucas M, Richter-Levin G (2014) The effects of a reminder of underwater trauma on behaviour and memory-related mechanisms in the rat dentate gyrus. Int J Neuropsychopharmacol 17(4):571–580. https://doi.org/10.1017/S1461145713001272

    Article  CAS  PubMed  Google Scholar 

  19. Richter-Levin G (1998) Acute and long-term behavioral correlates of underwater trauma—potential relevance to stress and post-stress syndromes. Psychiatry Res 79(1):73–83

    Article  CAS  PubMed  Google Scholar 

  20. Ritov G, Richter-Levin G (2017) Pre-trauma Methylphenidate in rats reduces PTSD-like reactions one month later. Transl Psychiatry 7(1):e1000. https://doi.org/10.1038/tp.2016.277

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Keller SM, Schreiber WB, Staib JM, Knox D (2015) Sex differences in the single prolonged stress model. Behav Brain Res 286:29–32. https://doi.org/10.1016/j.bbr.2015.02.034

    Article  PubMed  PubMed Central  Google Scholar 

  22. Knox D, Stanfield BR, Staib JM, David NP, DePietro T, Chamness M, Schneider EK, Keller SM, Lawless C (2018) Using c-Jun to identify fear extinction learning-specific patterns of neural activity that are affected by single prolonged stress. Behav Brain Res 341:189–197. https://doi.org/10.1016/j.bbr.2017.12.037

    Article  CAS  PubMed  Google Scholar 

  23. Knox D, Stanfield BR, Staib JM, David NP, Keller SM, DePietro T (2016) Neural circuits via which single prolonged stress exposure leads to fear extinction retention deficits. Learn Mem 23(12):689–698. https://doi.org/10.1101/lm.043141.116

    Article  PubMed  PubMed Central  Google Scholar 

  24. Serova LI, Laukova M, Alaluf LG, Pucillo L, Sabban EL (2014) Intranasal neuropeptide Y reverses anxiety and depressive-like behavior impaired by single prolonged stress PTSD model. Eur Neuropsychopharmacol 24(1):142–147. https://doi.org/10.1016/j.euroneuro.2013.11.007

    Article  CAS  PubMed  Google Scholar 

  25. Rau V, DeCola JP, Fanselow MS (2005) Stress-induced enhancement of fear learning: an animal model of posttraumatic stress disorder. Neurosci Biobehav Rev 29(8):1207–1223. https://doi.org/10.1016/j.neubiorev.2005.04.010

    Article  PubMed  Google Scholar 

  26. Poulos AM, Zhuravka I, Long V, Gannam C, Fanselow M (2015) Sensitization of fear learning to mild unconditional stimuli in male and female rats. Behav Neurosci 129(1):62–67. https://doi.org/10.1037/bne0000033

    Article  PubMed  Google Scholar 

  27. Sillivan SE, Joseph NF, Jamieson S, King ML, Chevere-Torres I, Fuentes I, Shumyatsky GP, Brantley AF, Rumbaugh G, Miller CA (2017) Susceptibility and resilience to posttraumatic stress disorder-like behaviors in inbred mice. Biol Psychiatry 82(12):924–933. https://doi.org/10.1016/j.biopsych.2017.06.030

    Article  PubMed  PubMed Central  Google Scholar 

  28. Siegmund A, Wotjak CT (2007) Hyperarousal does not depend on trauma-related contextual memory in an animal model of Posttraumatic Stress Disorder. Physiol Behav 90(1):103–107. https://doi.org/10.1016/j.physbeh.2006.08.032

    Article  CAS  PubMed  Google Scholar 

  29. Siegmund A, Wotjak CT (2007) A mouse model of posttraumatic stress disorder that distinguishes between conditioned and sensitised fear. J Psychiatr Res 41(10):848–860. https://doi.org/10.1016/j.jpsychires.2006.07.017

    Article  PubMed  Google Scholar 

  30. Careaga MBL, Girardi CEN, Suchecki D (2019) Variability in response to severe stress: highly reactive rats exhibit changes in fear and anxiety-like behavior related to distinct neuronal co-activation patterns. Behav Brain Res 373:112078. https://doi.org/10.1016/j.bbr.2019.112078

    Article  PubMed  Google Scholar 

  31. Careaga MBL, Girardi CEN, Suchecki D (2021) Propranolol failed to prevent severe stress-induced long-term behavioral changes in male rats. Prog Neuro-Psychopharmacol Biol Psychiatry 108:110079. https://doi.org/10.1016/j.pnpbp.2020.110079

    Article  CAS  Google Scholar 

  32. Girardi CE, Tiba PA, Llobet GB, Levin R, Abilio VC, Suchecki D (2013) Contextual exploration previous to an aversive event predicts long-term emotional consequences of severe stress. Front Behav Neurosci 7:134. https://doi.org/10.3389/fnbeh.2013.00134

    Article  PubMed  PubMed Central  Google Scholar 

  33. Pynoos RS, Ritzmann RF, Steinberg AM, Goenjian A, Prisecaru I (1996) A behavioral animal model of posttraumatic stress disorder featuring repeated exposure to situational reminders. Biol Psychiatry 39(2):129–134. https://doi.org/10.1016/0006-3223(95)00088-7

    Article  CAS  PubMed  Google Scholar 

  34. Louvart H, Maccari S, Lesage J, Leonhardt M, Dickes-Coopman A, Darnaudery M (2006) Effects of a single footshock followed by situational reminders on HPA axis and behaviour in the aversive context in male and female rats. Psychoneuroendocrinology 31(1):92–99. https://doi.org/10.1016/j.psyneuen.2005.05.014

    Article  CAS  PubMed  Google Scholar 

  35. Girardi CEN, Llobet GB, Suchecki D, Tiba PA (2018) High corticosterone after olfactory social stimuli in a rodent model of traumatic stress. Psychol Neurosci 11(1):105–115. https://doi.org/10.1037/pne0000128

    Article  Google Scholar 

  36. Blanchard DC, Blanchard RJ (1972) Innate and conditioned reactions to threat in rats with amygdaloid lesions. J Comp Physiol Psychol 81(2):281–290. https://doi.org/10.1037/h0033521

    Article  CAS  PubMed  Google Scholar 

  37. Hitchcock J, Davis M (1986) Lesions of the amygdala, but not of the cerebellum or red nucleus, block conditioned fear as measured with the potentiated startle paradigm. Behav Neurosci 100(1):11–22. https://doi.org/10.1037//0735-7044.100.1.11

    Article  CAS  PubMed  Google Scholar 

  38. Blanchard RJ, Blanchard DC, Agullana R, Weiss SM (1991) Twenty-two kHz alarm cries to presentation of a predator, by laboratory rats living in visible burrow systems. Physiol Behav 50(5):967–972. https://doi.org/10.1016/0031-9384(91)90423-l

    Article  CAS  PubMed  Google Scholar 

  39. Iwata J, LeDoux JE, Reis DJ (1986) Destruction of intrinsic neurons in the lateral hypothalamus disrupts the classical conditioning of autonomic but not behavioral emotional responses in the rat. Brain Res 368(1):161–166. https://doi.org/10.1016/0006-8993(86)91055-3

    Article  CAS  PubMed  Google Scholar 

  40. Kapp BS, Frysinger RC, Gallagher M, Haselton JR (1979) Amygdala central nucleus lesions: effect on heart rate conditioning in the rabbit. Physiol Behav 23(6):1109–1117. https://doi.org/10.1016/0031-9384(79)90304-4

    Article  CAS  PubMed  Google Scholar 

  41. Bremner JD (2005) Effects of traumatic stress on brain structure and function: relevance to early responses to trauma. J Trauma Dissociation 6(2):51–68. https://doi.org/10.1300/J229v06n02_06

    Article  PubMed  Google Scholar 

  42. Bremner JD (2002) Neuroimaging studies in post-traumatic stress disorder. Curr Psychiatry Rep 4(4):254–263. https://doi.org/10.1007/s11920-996-0044-9

    Article  PubMed  Google Scholar 

  43. Quirk GJ, Mueller D (2008) Neural mechanisms of extinction learning and retrieval. Neuropsychopharmacology 33(1):56–72. https://doi.org/10.1038/sj.npp.1301555

    Article  PubMed  Google Scholar 

  44. Myers KM, Davis M (2002) Behavioral and neural analysis of extinction. Neuron 36(4):567–584. https://doi.org/10.1016/s0896-6273(02)01064-4

    Article  CAS  PubMed  Google Scholar 

  45. Bouton ME (2004) Context and behavioral processes in extinction. Learn Mem 11(5):485–494. https://doi.org/10.1101/lm.78804

    Article  PubMed  Google Scholar 

  46. Lissek S, van Meurs B (2015) Learning models of PTSD: theoretical accounts and psychobiological evidence. Int J Psychophysiol 98(3 Pt 2):594–605. https://doi.org/10.1016/j.ijpsycho.2014.11.006

    Article  PubMed  Google Scholar 

  47. Peri T, Ben-Shakhar G, Orr SP, Shalev AY (2000) Psychophysiologic assessment of aversive conditioning in posttraumatic stress disorder. Biol Psychiatry 47(6):512–519. https://doi.org/10.1016/s0006-3223(99)00144-4

    Article  CAS  PubMed  Google Scholar 

  48. Blechert J, Michael T, Vriends N, Margraf J, Wilhelm FH (2007) Fear conditioning in posttraumatic stress disorder: evidence for delayed extinction of autonomic, experiential, and behavioural responses. Behav Res Ther 45(9):2019–2033. https://doi.org/10.1016/j.brat.2007.02.012

    Article  PubMed  Google Scholar 

  49. Jovanovic T, Norrholm SD, Sakoman AJ, Esterajher S, Kozaric-Kovacic D (2009) Altered resting psychophysiology and startle response in Croatian combat veterans with PTSD. Int J Psychophysiol 71(3):264–268. https://doi.org/10.1016/j.ijpsycho.2008.10.007

    Article  PubMed  Google Scholar 

  50. Glover EM, Jovanovic T, Mercer KB, Kerley K, Bradley B, Ressler KJ, Norrholm SD (2012) Estrogen levels are associated with extinction deficits in women with posttraumatic stress disorder. Biol Psychiatry 72(1):19–24. https://doi.org/10.1016/j.biopsych.2012.02.031

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Choi DC, Rothbaum BO, Gerardi M, Ressler KJ (2010) Pharmacological enhancement of behavioral therapy: focus on posttraumatic stress disorder. Curr Top Behav Neurosci 2:279–299

    Article  PubMed  Google Scholar 

  52. Johansen JP, Cain CK, Ostroff LE, LeDoux JE (2011) Molecular mechanisms of fear learning and memory. Cell 147(3):509–524. https://doi.org/10.1016/j.cell.2011.10.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Maren S (2011) Seeking a spotless mind: extinction, deconsolidation, and erasure of fear memory. Neuron 70(5):830–845. https://doi.org/10.1016/j.neuron.2011.04.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Debiec J, Ledoux JE (2004) Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala. Neuroscience 129(2):267–272. https://doi.org/10.1016/j.neuroscience.2004.08.018

    Article  CAS  PubMed  Google Scholar 

  55. Hefner K, Whittle N, Juhasz J, Norcross M, Karlsson RM, Saksida LM, Bussey TJ, Singewald N, Holmes A (2008) Impaired fear extinction learning and cortico-amygdala circuit abnormalities in a common genetic mouse strain. J Neurosci 28(32):8074–8085. https://doi.org/10.1523/JNEUROSCI.4904-07.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Muravieva EV, Alberini CM (2010) Limited efficacy of propranolol on the reconsolidation of fear memories. Learn Mem 17(6):306–313. https://doi.org/10.1101/lm.1794710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Careaga MB, Tiba PA, Ota SM, Suchecki D (2015) Pre-test metyrapone impairs memory recall in fear conditioning tasks: lack of interaction with β-adrenergic activity. Front Behav Neurosci 9:51. https://doi.org/10.3389/fnbeh.2015.00051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Verbitsky A, Dopfel D, Zhang N (2020) Rodent models of post-traumatic stress disorder: behavioral assessment. Transl Psychiatry 10(1):132. https://doi.org/10.1038/s41398-020-0806-x

    Article  PubMed  PubMed Central  Google Scholar 

  59. Ritov G, Boltyansky B, Richter-Levin G (2016) A novel approach to PTSD modeling in rats reveals alternating patterns of limbic activity in different types of stress reaction. Mol Psychiatry 21(5):630–641. https://doi.org/10.1038/mp.2015.169

    Article  CAS  PubMed  Google Scholar 

  60. Golub Y, Mauch CP, Dahlhoff M, Wotjak CT (2009) Consequences of extinction training on associative and non-associative fear in a mouse model of Posttraumatic Stress Disorder (PTSD). Behav Brain Res 205(2):544–549. https://doi.org/10.1016/j.bbr.2009.08.019

    Article  PubMed  Google Scholar 

  61. Dell’Osso L, Carmassi C, Del Debbio A, Catena Dell’Osso M, Bianchi C, da Pozzo E, Origlia N, Domenici L, Massimetti G, Marazziti D, Piccinni A (2009) Brain-derived neurotrophic factor plasma levels in patients suffering from post-traumatic stress disorder. Prog Neuro-Psychopharmacol Biol Psychiatry 33(5):899–902. https://doi.org/10.1016/j.pnpbp.2009.04.018

    Article  CAS  Google Scholar 

  62. Bremner JD, Vermetten E, Schmahl C, Vaccarino V, Vythilingam M, Afzal N, Grillon C, Charney DS (2005) Positron emission tomographic imaging of neural correlates of a fear acquisition and extinction paradigm in women with childhood sexual-abuse-related post-traumatic stress disorder. Psychol Med 35(6):791–806. https://doi.org/10.1017/s0033291704003290

    Article  PubMed  PubMed Central  Google Scholar 

  63. Bremner JD, Vythilingam M, Vermetten E, Southwick SM, McGlashan T, Staib LH, Soufer R, Charney DS (2003) Neural correlates of declarative memory for emotionally valenced words in women with posttraumatic stress disorder related to early childhood sexual abuse. Biol Psychiatry 53(10):879–889. https://doi.org/10.1016/s0006-3223(02)01891-7

    Article  PubMed  Google Scholar 

  64. Louvart H, Maccari S, Ducrocq F, Thomas P, Darnaudery M (2005) Long-term behavioural alterations in female rats after a single intense footshock followed by situational reminders. Psychoneuroendocrinology 30(4):316–324. https://doi.org/10.1016/j.psyneuen.2004.09.003

    Article  PubMed  Google Scholar 

  65. Milad MR, Pitman RK, Ellis CB, Gold AL, Shin LM, Lasko NB, Zeidan MA, Handwerger K, Orr SP, Rauch SL (2009) Neurobiological basis of failure to recall extinction memory in posttraumatic stress disorder. Biol Psychiatry 66(12):1075–1082. https://doi.org/10.1016/j.biopsych.2009.06.026

    Article  PubMed  PubMed Central  Google Scholar 

  66. Pooley AE, Benjamin RC, Sreedhar S, Eagle AL, Robison AJ, Mazei-Robison MS, Breedlove SM, Jordan CL (2018) Sex differences in the traumatic stress response: the role of adult gonadal hormones. Biol Sex Differ 9(1):32. https://doi.org/10.1186/s13293-018-0192-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pooley AE, Benjamin RC, Sreedhar S, Eagle AL, Robison AJ, Mazei-Robison MS, Breedlove SM, Jordan CL (2018) Sex differences in the traumatic stress response: PTSD symptoms in women recapitulated in female rats. Biol Sex Differ 9(1):31. https://doi.org/10.1186/s13293-018-0191-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Koresh O, Kaplan Z, Zohar J, Matar MA, Geva AB, Cohen H (2016) Distinctive cardiac autonomic dysfunction following stress exposure in both sexes in an animal model of PTSD. Behav Brain Res 308:128–142. https://doi.org/10.1016/j.bbr.2016.04.024

    Article  PubMed  Google Scholar 

  69. Zoladz PR, D’Alessio PA, Seeley SL, Kasler CD, Goodman CS, Mucher KE, Allison AS, Smith IF, Dodson JL, Stoops TS, Rorabaugh BR (2019) A predator-based psychosocial stress animal model of PTSD in females: influence of estrous phase and ovarian hormones. Horm Behav 115:104564. https://doi.org/10.1016/j.yhbeh.2019.104564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Mazor A, Matar MA, Kaplan Z, Kozlovsky N, Zohar J, Cohen H (2009) Gender-related qualitative differences in baseline and post-stress anxiety responses are not reflected in the incidence of criterion-based PTSD-like behaviour patterns. World J Biol Psychiatry 10(4 Pt 3):856–869. https://doi.org/10.1080/15622970701561383

    Article  PubMed  Google Scholar 

  71. Ribeiro AM, Barbosa FF, Godinho MR, Fernandes VS, Munguba H, Melo TG, Barbosa MT, Eufrasio RA, Cabral A, Izidio GS, Silva RH (2010) Sex differences in aversive memory in rats: possible role of extinction and reactive emotional factors. Brain Cogn 74(2):145–151. https://doi.org/10.1016/j.bandc.2010.07.012

    Article  PubMed  Google Scholar 

  72. Gruene TM, Flick K, Stefano A, Shea SD, Shansky RM (2015) Sexually divergent expression of active and passive conditioned fear responses in rats. elife 4. https://doi.org/10.7554/eLife.11352

  73. Daviu N, Andero R, Armario A, Nadal R (2014) Sex differences in the behavioural and hypothalamic-pituitary-adrenal response to contextual fear conditioning in rats. Horm Behav 66(5):713–723. https://doi.org/10.1016/j.yhbeh.2014.09.015

    Article  CAS  PubMed  Google Scholar 

  74. Yehuda R, Flory JD, Pratchett LC, Buxbaum J, Ising M, Holsboer F (2010) Putative biological mechanisms for the association between early life adversity and the subsequent development of PTSD. Psychopharmacology 212(3):405–417. https://doi.org/10.1007/s00213-010-1969-6

    Article  CAS  PubMed  Google Scholar 

  75. Richter-Levin G, Sandi C (2021) Title: “labels matter: is it stress or is it trauma?”. Transl Psychiatry 11(1):385. https://doi.org/10.1038/s41398-021-01514-4

    Article  PubMed  PubMed Central  Google Scholar 

  76. Shansky RM (2015) Sex differences in PTSD resilience and susceptibility: challenges for animal models of fear learning. Neurobiol Stress 1:60–65. https://doi.org/10.1016/j.ynstr.2014.09.005

    Article  PubMed  Google Scholar 

  77. Richter-Levin G, Stork O, Schmidt MV (2019) Animal models of PTSD: a challenge to be met. Mol Psychiatry 24(8):1135–1156. https://doi.org/10.1038/s41380-018-0272-5

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deborah Suchecki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Careaga, M.B.L., Girardi, C.E.N., Suchecki, D. (2023). Animal Models of PTSD: The Role of Fear Conditioning. In: Pinna, G. (eds) Translational Methods for PTSD Research. Neuromethods, vol 198. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3218-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3218-5_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3217-8

  • Online ISBN: 978-1-0716-3218-5

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics