Skip to main content

Cell Cultures at the Air–Liquid Interface and Their Application in Cancer Research

  • Protocol
  • First Online:
Cancer Cell Culture

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2645))

Abstract

Air-liquid interface (ALI) cell cultures are considered a valid tool for the replacement of animals in biomedical research. By mimicking crucial features of the human in vivo epithelial barriers (e.g., lung, intestine, and skin), ALI cell cultures enable proper structural architectures and differentiated functions of normal and diseased tissue barriers. Thereby, ALI models realistically resemble tissue conditions and provide in vivo-like responses. Since their implementation, they are routinely used in several applications, from toxicity testing to cancer research, receiving an appreciable level of acceptance (in some cases a regulatory acceptance) as attractive testing alternatives to animals. In this chapter, an overview of the ALI cell cultures will be presented together with their application in cancer cell culture, highlighting the potential advantages and disadvantages of the model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Di Cristo L, Maguire CM, Mc Quillan K et al (2018) Towards the identification of an in vitro tool for assessing the biological behavior of aerosol supplied nanomaterials. Int J Environ Res Public Health 15:563

    PubMed  PubMed Central  Google Scholar 

  2. Movia D, Bazou D, Volkov Y, Prina-Mello A (2018) Multilayered Cultures of NSCLC cells grown at the Air-Liquid Interface allow the efficacy testing of inhaled anti-cancer drugs. Sci Rep 8:1–19

    CAS  Google Scholar 

  3. Movia D, Bazou D, Prina-Mello A (2019) ALI multilayered co-cultures mimic biochemical mechanisms of the cancer cell-fibroblast cross-talk involved in NSCLC MultiDrug Resistance. BMC Cancer 19:1–21

    CAS  Google Scholar 

  4. Chen S, Schoen J (2019) Air-liquid interface cell culture: from airway epithelium to the female reproductive tract. Reprod Domest Anim 54:38–45

    PubMed  Google Scholar 

  5. Lacroix G, Koch W, Ritter D et al (2018) Air–liquid Interface in vitro models for respiratory toxicology research: consensus workshop and recommendations. Appl Vitro Toxicol 4:91–106

    Google Scholar 

  6. Di Cristo L, Boccuni F, Iavicoli S, Sabella S (2020) A human-relevant 3D in vitro platform for an effective and rapid simulation of workplace exposure to nanoparticles: silica nanoparticles as case study. Nano 10:1761

    CAS  Google Scholar 

  7. Di Cristo L, Grimaldi B, Catelani T et al (2020) Repeated exposure to aerosolized graphene oxide mediates autophagy inhibition and inflammation in a three-dimensional human airway model. Materials Today Bio 6:100050

    PubMed  PubMed Central  Google Scholar 

  8. Movia D, Di Cristo L, Alnemari R et al (2017) The curious case of how mimicking physiological complexity in in vitro models of the human respiratory system influences the inflammatory responses. A preliminary study focused on gold nanoparticles. J Interdiscip Nanomed 2:110–130

    CAS  Google Scholar 

  9. Ootani A, Toda S, Fujimoto K, Sugihara H (2000) An air–liquid interface promotes the differentiation of gastric surface mucous cells (GSM06) in culture. Biochem Biophys Res Commun 271:741–746

    CAS  PubMed  Google Scholar 

  10. Li X, Ootani A, Kuo C (2016) An air–liquid interface culture system for 3D organoid culture of diverse primary gastrointestinal tissues. In: Gastrointestinal physiology and diseases. Springer, pp 33–40

    Google Scholar 

  11. Alexander FA, Eggert S, Wiest J (2018) Skin-on-a-chip: transepithelial electrical resistance and extracellular acidification measurements through an automated air-liquid interface. Genes 9:114

    PubMed  PubMed Central  Google Scholar 

  12. Larouche D, Cantin-Warren L, Desgagné M et al (2016) Improved methods to produce tissue-engineered skin substitutes suitable for the permanent closure of full-thickness skin injuries. BioResearch open access 5:320–329

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Fauzi MB, Rashidbenam Z, Bin Saim A, Binti Hj Idrus R (2020) Preliminary study of in vitro three-dimensional skin model using an ovine collagen type i sponge seeded with co-culture skin cells: submerged versus air-liquid interface conditions. Polymers 12:2784

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Greco D, Vellonen K-S, Turner HC et al (2010) Gene expression analysis in SV-40 immortalized human corneal epithelial cells cultured with an air-liquid interface. Mol Vis 16:2109

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Kawata K, Aoki S, Futamata M et al (2019) Mesenchymal cells and fluid flow stimulation synergistically regulate the kinetics of corneal epithelial cells at the air–liquid interface. Graefes Arch Clin Exp Ophthalmol 257:1915–1924

    CAS  PubMed  Google Scholar 

  16. Usui T, Sakurai M, Umata K et al (2018) Preparation of human primary colon tissue-derived organoid using air liquid Interface culture. Curr Protoc Toxicol 75:22–26

    Google Scholar 

  17. Klasvogt S, Zuschratter W, Schmidt A et al (2017) Air–liquid interface enhances oxidative phosphorylation in intestinal epithelial cell line IPEC-J2. Cell Death Discov 3:1–7

    Google Scholar 

  18. Nossol C, Diesing A-K, Walk N et al (2011) Air–liquid interface cultures enhance the oxygen supply and trigger the structural and functional differentiation of intestinal porcine epithelial cells (IPEC). Histochem Cell Biol 136:103–115

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Zhu Y, Yang Y, Guo J et al (2017) Ex vivo 2D and 3D HSV-2 infection model using human normal vaginal epithelial cells. Oncotarget 8:15267

    PubMed  PubMed Central  Google Scholar 

  20. Lee Y, Dizzell SE, Leung V et al (2016) Effects of female sex hormones on susceptibility to HSV-2 in vaginal cells grown in air-liquid interface. Viruses 8:241

    PubMed  PubMed Central  Google Scholar 

  21. Han X, Mslati M, Davies E et al (2021) Creating a more perfect union: Modeling intestinal bacteria-epithelial interactions using organoids. Cell Mol Gastroenterol Hepatol

    Google Scholar 

  22. Movia D, Bruni-Favier S, Prina-Mello A (2020) In vitro alternatives to acute inhalation toxicity studies in animal models—a perspective. Front Bioeng Biotechnol 8:549

    PubMed  PubMed Central  Google Scholar 

  23. Zuang V, Dura A, et al (2021) Non-animal methods in science and regulation – EURL ECVAM Status Report 2020. Publications Office of the European Union, Luxembourg. https://doi.org/10.2760/719755

  24. Kandarova H, Letasiova S, Adriaens E et al (2018) CON4EI: EpiOcularTM Eye Irritation Test (EpiOcular™ EIT) for hazard identification and labelling of eye irritating chemicals. Toxicol In Vitro 49:21–33

    CAS  PubMed  Google Scholar 

  25. Kandarova H, Letasiova S, Adriaens E et al (2018) CON4EI: CONsortium for in vitro Eye Irritation testing strategy-EpiOcular™ time-to-toxicity (EpiOcular ET-50) protocols for hazard identification and labelling of eye irritating chemicals. Toxicol In Vitro 49:34–52

    CAS  PubMed  Google Scholar 

  26. Wang S, Ghezzi CE, Gomes R et al (2017) In vitro 3D corneal tissue model with epithelium, stroma, and innervation. Biomaterials 112:1–9

    PubMed  Google Scholar 

  27. Sekiya S, Kikuchi T, Shimizu T (2019) Perfusion culture maintained with an air-liquid interface to stimulate epithelial cell organization in renal organoids in vitro. BMC Biomed Eng 1:1–12

    Google Scholar 

  28. Esser LK, Branchi V, Leonardelli S et al (2020) Cultivation of clear cell renal cell carcinoma patient-derived organoids in an air-liquid interface system as a tool for studying individualized therapy. Front Oncol 10:1775

    PubMed  PubMed Central  Google Scholar 

  29. Giandomenico SL, Mierau SB, Gibbons GM et al (2019) Cerebral organoids at the air–liquid interface generate diverse nerve tracts with functional output. Nat Neurosci 22:669–679

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Ao Z, Cai H, Havert DJ et al (2020) One-stop microfluidic assembly of human brain organoids to model prenatal cannabis exposure. Anal Chem 92:4630–4638

    CAS  PubMed  Google Scholar 

  31. Alper S, Janssen WJ (2018) Lung innate immunity and inflammation. Springer

    Google Scholar 

  32. Cao X, Coyle JP, Xiong R et al (2020) Invited review: human air-liquid-interface organotypic airway tissue models derived from primary tracheobronchial epithelial cells—overview and perspectives. In Vitro Cell Dev Biol Anim:1–29

    Google Scholar 

  33. Wanner A, Salathé M, O’Riordan TG (1996) Mucociliary clearance in the airways. Am J Respir Crit Care Med 154:1868–1902

    CAS  PubMed  Google Scholar 

  34. Wang H, He L, Liu B et al (2018) Establishment and comparison of air-liquid interface culture systems for primary and immortalized swine tracheal epithelial cells. BMC Cell Biol 19:1–10

    PubMed  PubMed Central  Google Scholar 

  35. Flynn AN, Itani OA, Moninger TO, Welsh MJ (2009) Acute regulation of tight junction ion selectivity in human airway epithelia. Proc Natl Acad Sci 106:3591–3596

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Godfrey RWA (1997) Human airway epithelial tight junctions. Microsc Res Tech 38:488–499

    CAS  PubMed  Google Scholar 

  37. Knudsen L, Ochs M (2018) The micromechanics of lung alveoli: structure and function of surfactant and tissue components. Histochem Cell Biol 150:661–676

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Movia D, Prina-Mello A (2020) Preclinical development of orally inhaled drugs (OIDs)—are animal models predictive or shall we move towards in vitro non-animal models? Animals 10:1259

    PubMed  PubMed Central  Google Scholar 

  39. Upadhyay S, Palmberg L (2018) Air-liquid interface: relevant in vitro models for investigating air pollutant-induced pulmonary toxicity. Toxicol Sci 164:21–30

    CAS  PubMed  Google Scholar 

  40. Gordon S, Daneshian M, Bouwstra J et al (2015) Non-animal models of epithelial barriers (skin, intestine and lung) in research, industrial applications and regulatory toxicology. ALTEX 32:327–378

    PubMed  Google Scholar 

  41. Clippinger AJ, Allen D, Jarabek AM et al (2018) Alternative approaches for acute inhalation toxicity testing to address global regulatory and non-regulatory data requirements: an international workshop report. Toxicol In Vitro 48:53–70

    CAS  PubMed  Google Scholar 

  42. Rotoli BM, Gatti R, Movia D et al (2015) Identifying contact-mediated, localized toxic effects of MWCNT aggregates on epithelial monolayers: a single-cell monitoring toxicity assay. Nanotoxicology 9:230–241

    CAS  PubMed  Google Scholar 

  43. Rotoli BM, Bussolati O, Costa AL et al (2012) Comparative effects of metal oxide nanoparticles on human airway epithelial cells and macrophages. J Nanopart Res 14:1–14

    Google Scholar 

  44. Di Cristo L, Bianchi MG, Chiu M et al (2019) Comparative in vitro cytotoxicity of realistic doses of benchmark multi-walled carbon nanotubes towards macrophages and airway epithelial cells. Nano 9:982

    Google Scholar 

  45. Inoue D, Furubayashi T, Tanaka A et al (2020) Quantitative estimation of drug permeation through nasal mucosa using in vitro membrane permeability across Calu-3 cell layers for predicting in vivo bioavailability after intranasal administration to rats. Eur J Pharm Biopharm 149:145–153

    CAS  PubMed  Google Scholar 

  46. Sibinovska N, Žakelj S, Roškar R, Kristan K (2020) Suitability and functional characterization of two Calu-3 cell models for prediction of drug permeability across the airway epithelial barrier. Int J Pharm 585:119484

    CAS  PubMed  Google Scholar 

  47. He R-W, Gerlofs-Nijland ME, Boere J et al (2020) Comparative toxicity of ultrafine particles around a major airport in human bronchial epithelial (Calu-3) cell model at the air–liquid interface. Toxicol In Vitro 68:104950

    CAS  PubMed  Google Scholar 

  48. Facio AJ, Yon J, Corbière C et al (2022) Toxicological impact of organic ultrafine particles (UFPs) in human bronchial epithelial BEAS-2B cells at air-liquid interface. Toxicol In Vitro 78:105258

    Google Scholar 

  49. Pinkston R, Zaman H, Hossain E et al (2020) Cell-specific toxicity of short-term JUUL aerosol exposure to human bronchial epithelial cells and murine macrophages exposed at the air–liquid interface. Respir Res 21:1–15

    Google Scholar 

  50. Stewart CE, Torr EE, Mohd Jamili NH et al (2012) Evaluation of differentiated human bronchial epithelial cell culture systems for asthma research. J Allergy:2012

    Google Scholar 

  51. Callaghan PJ, Ferrick B, Rybakovsky E et al (2020) Epithelial barrier function properties of the 16HBE14o-human bronchial epithelial cell culture model. Biosci Rep 40:BSR20201532

    PubMed  PubMed Central  Google Scholar 

  52. Rothen-Rutishauser B, Blank F, Mühlfeld C, Gehr P (2008) In vitro models of the human epithelial airway barrier to study the toxic potential of particulate matter. Expert Opin Drug Metab Toxicol 4:1075–1089

    CAS  PubMed  Google Scholar 

  53. Hutchinson D, Müller J, McCarthy JE et al (2018) Cadmium nanoparticles citrullinate cytokeratins within lung epithelial cells: cadmium as a potential cause of citrullination in chronic obstructive pulmonary disease. Int J Chron Obstruct Pulmon Dis 13:441

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Bitterle E, Karg E, Schroeppel A et al (2006) Dose-controlled exposure of A549 epithelial cells at the air–liquid interface to airborne ultrafine carbonaceous particles. Chemosphere 65:1784–1790

    CAS  PubMed  Google Scholar 

  55. Öhlinger K, Kolesnik T, Meindl C et al (2019) Air-liquid interface culture changes surface properties of A549 cells. Toxicol In Vitro 60:369–382

    PubMed  Google Scholar 

  56. Salomon JJ, Muchitsch VE, Gausterer JC et al (2014) The cell line NCl-H441 is a useful in vitro model for transport studies of human distal lung epithelial barrier. Mol Pharm 11:995–1006

    CAS  PubMed  Google Scholar 

  57. Klein SG, Serchi T, Hoffmann L et al (2013) An improved 3D tetraculture system mimicking the cellular organisation at the alveolar barrier to study the potential toxic effects of particles on the lung. Part Fibre Toxicol 10:1–18

    Google Scholar 

  58. Wang Y, Adamcakova-Dodd A, Steines BR et al (2020) Comparison of in vitro toxicity of aerosolized engineered nanomaterials using air-liquid interface mono-culture and co-culture models. NanoImpact 18:100215

    PubMed  PubMed Central  Google Scholar 

  59. Fizeșan I, Chary A, Cambier S et al (2018) Responsiveness assessment of a 3D tetra-culture alveolar model exposed to diesel exhaust particulate matter. Toxicol In Vitro 53:67–79

    PubMed  Google Scholar 

  60. Barosova H, Karakocak BB, Septiadi D et al (2020) An in vitro lung system to assess the proinflammatory hazard of carbon nanotube aerosols. Int J Mol Sci 21:5335

    CAS  PubMed  PubMed Central  Google Scholar 

  61. Rothen-Rutishauser BM, Kiama SG, Gehr P (2005) A three-dimensional cellular model of the human respiratory tract to study the interaction with particles. Am J Respir Cell Mol Biol 32:281–289

    CAS  PubMed  Google Scholar 

  62. Fytianos K, Chortarea S, Rodriguez-Lorenzo L et al (2017) Aerosol delivery of functionalized gold nanoparticles target and activate dendritic cells in a 3D lung cellular model. ACS Nano 11:375–383

    CAS  PubMed  Google Scholar 

  63. He R-W, Braakhuis HM, Vandebriel RJ et al (2021) Optimization of an air-liquid interface in vitro cell co-culture model to estimate the hazard of aerosol exposures. J Aerosol Sci 153:105703

    CAS  PubMed  PubMed Central  Google Scholar 

  64. Meindl C, Öhlinger K, Zrim V et al (2021) Screening for effects of inhaled nanoparticles in cell culture models for prolonged exposure. Nano 11:606

    CAS  Google Scholar 

  65. Jackson GR Jr, Maione AG, Klausner M, Hayden PJ (2018) Prevalidation of an acute inhalation toxicity test using the EpiAirway in vitro human airway model. Appl in Vitro Toxicol 4:149–158

    CAS  PubMed  PubMed Central  Google Scholar 

  66. Barosova H, Maione AG, Septiadi D et al (2020) Use of EpiAlveolar lung model to predict fibrotic potential of multiwalled carbon nanotubes. ACS Nano 14:3941–3956

    CAS  PubMed  Google Scholar 

  67. Barilli A, Visigalli R, Ferrari F et al (2020) Organic cation transporters (OCTs) in EpiAirway™, a cellular model of Normal human bronchial epithelium. Biomedicine 8:127

    CAS  Google Scholar 

  68. McGee Hargrove M, Parr-Dobrzanski B, Li L et al (2021) Use of the MucilAir airway assay, a new approach methodology, for evaluating the safety and inhalation risk of agrochemicals. Applied In Vitro Toxicology 7:50–60

    CAS  Google Scholar 

  69. Cervena T, Vrbova K, Rossnerova A et al (2019) Short-term and long-term exposure of the MucilAir™ model to polycyclic aromatic hydrocarbons. Altern Lab Anim 47:9–18

    PubMed  Google Scholar 

  70. Zuang V, Dura A, Asturiol Bofill D, et al (2020) EURL ECVAM status report on the development, validation and regulatory acceptance of alternative methods and approaches (2019). EUR 30100 EN, Publications Office of the European Union

    Google Scholar 

  71. Jung K, Eyerly B, Annamalai T et al (2015) Structural alteration of tight and adherens junctions in villous and crypt epithelium of the small and large intestine of conventional nursing piglets infected with porcine epidemic diarrhea virus. Vet Microbiol 177:373–378

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Viggiano D, Ianiro G, Vanella G et al (2015) Gut barrier in health and disease: focus on childhood. Eur Rev Med Pharmacol Sci 19:1077–1085

    CAS  PubMed  Google Scholar 

  73. Wells JM, Brummer RJ, Derrien M et al (2017) Homeostasis of the gut barrier and potential biomarkers. Am J Physiol-Gastrointestinal Liver Physiol 312:G171–G193

    Google Scholar 

  74. Doherty MM, Charman WN (2002) The mucosa of the small intestine. Clin Pharmacokinet 41:235–253

    CAS  PubMed  Google Scholar 

  75. Jeon MK, Klaus C, Kaemmerer E, Gassler N (2013) Intestinal barrier: molecular pathways and modifiers. World J Gastrointest Pathophysiol 4:94

    PubMed  PubMed Central  Google Scholar 

  76. Lefebvre DE, Venema K, Gombau L et al (2015) Utility of models of the gastrointestinal tract for assessment of the digestion and absorption of engineered nanomaterials released from food matrices. Nanotoxicology 9:523–542

    CAS  PubMed  Google Scholar 

  77. Peterson LW, Artis D (2014) Intestinal epithelial cells: regulators of barrier function and immune homeostasis. Nat Rev Immunol 14:141–153

    CAS  PubMed  Google Scholar 

  78. Lea T (2015) Caco-2 cell line. The impact of food bioactives on health. pp 103–111

    Google Scholar 

  79. Ponce de León-Rodríguez M del C, Guyot J-P, Laurent-Babot C (2019) Intestinal in vitro cell culture models and their potential to study the effect of food components on intestinal inflammation. Crit Rev Food Sci Nutr 59:3648–3666

    Google Scholar 

  80. Carnovale C, Guarnieri D, Di Cristo L et al (2021) Biotransformation of silver nanoparticles into oro-gastrointestinal tract by integrated in vitro testing assay: generation of exposure-dependent physical descriptors for nanomaterial grouping. Nano 11:1587

    CAS  Google Scholar 

  81. Guarnieri D, Sánchez-Moreno P, Del Rio Castillo AE et al (2018) Biotransformation and biological interaction of graphene and graphene oxide during simulated oral ingestion. Small 14:1800227

    Google Scholar 

  82. Araújo F, Sarmento B (2013) Towards the characterization of an in vitro triple co-culture intestine cell model for permeability studies. Int J Pharm 458:128–134

    PubMed  Google Scholar 

  83. Gibb M, Pradhan SH, Mulenos MR et al (2021) Characterization of a human in vitro intestinal model for the Hazard assessment of nanomaterials used in cancer immunotherapy. Appl Sci 11:2113

    CAS  Google Scholar 

  84. Cui Y, Claus S, Schnell D et al (2020) In-depth characterization of EpiIntestinal microtissue as a model for intestinal drug absorption and metabolism in human. Pharmaceutics 12:405

    CAS  PubMed  PubMed Central  Google Scholar 

  85. Ayehunie S, Stevens Z, Landry T, et al (2014) Novel 3D human small intestinal tissue model (EpiIntestinal™) to assess drug permeation & inflammation. In: AAPS NERDG annual meeting, Farmington, CT, USA

    Google Scholar 

  86. Simon F, Garcia J, Guyot L et al (2020) Impact of interleukin-6 on drug-metabolizing enzymes and transporters in intestinal cells. AAPS J 22:1–10

    Google Scholar 

  87. Fedi A, Vitale C, Ponschin G et al (2021) In vitro models replicating the human intestinal epithelium for absorption and metabolism studies: a systematic review. J Control Release

    Google Scholar 

  88. Markus J, Landry T, Stevens Z et al (2021) Human small intestinal organotypic culture model for drug permeation, inflammation, and toxicity assays. In Vitro Cell Dev Biol Anim 57:160–173

    PubMed  Google Scholar 

  89. Short SP, Costacurta PW, Williams CS (2017) Using 3D organoid cultures to model intestinal physiology and colorectal cancer. Curr Colorectal Cancer Rep 13:183–191

    PubMed  PubMed Central  Google Scholar 

  90. Choi K-YG, Wu BC, Lee AH-Y et al (2020) Utilizing organoid and air-liquid interface models as a screening method in the development of new host defense peptides. Front Cell Infect Microbiol 10:228

    CAS  PubMed  PubMed Central  Google Scholar 

  91. Matsui T, Amagai M (2015) Dissecting the formation, structure and barrier function of the stratum corneum. Int Immunol 27:269–280

    CAS  PubMed  Google Scholar 

  92. Brettmann EA, de Guzman SC (2018) Recent evolution of the human skin barrier. Exp Dermatol 27:859–866

    PubMed  PubMed Central  Google Scholar 

  93. Bouwstra JA, Dubbelaar FER, Gooris GS, Ponec M (2000) The lipid organisation in the skin barrier. Acta Dermatol Venereol, pp 23–30

    Google Scholar 

  94. Pourchet LJ, Thepot A, Albouy M et al (2017) Human skin 3D bioprinting using scaffold-free approach. Adv Healthc Mater 6:1601101

    Google Scholar 

  95. Teimouri A, Yeung P, Agu R (2018) 2D vs. 3D cell culture models for in vitro topical (dermatological) medication testing. IntechOpen

    Google Scholar 

  96. Gangatirkar P, Paquet-Fifield S, Li A et al (2007) Establishment of 3D organotypic cultures using human neonatal epidermal cells. Nat Protoc 2:178–186

    CAS  PubMed  Google Scholar 

  97. Rheinwald JG, Green H (1975) Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 6:331–343

    CAS  PubMed  Google Scholar 

  98. Aoki S, Takezawa T, Sugihara H, Toda S (2016) Progress in cell culture systems for pathological research. Pathol Int 66:554–562

    PubMed  Google Scholar 

  99. Mewes KR, Fischer A, Zöller NN et al (2016) Catch-up validation study of an in vitro skin irritation test method based on an open source reconstructed epidermis (phase I). Toxicol In Vitro 36:238–253

    CAS  PubMed  Google Scholar 

  100. Spielmann H, Hoffmann S, Liebsch M et al (2007) The ECVAM international validation study on in vitro tests for acute skin irritation: report on the validity of the EPISKIN and EpiDerm assays and on the Skin Integrity Function Test. Altern Lab Anim 35:559–601

    CAS  PubMed  Google Scholar 

  101. Rogiers V, Benfenati E, Bernauer U et al (2020) The way forward for assessing the human health safety of cosmetics in the EU – workshop proceedings. Toxicology 436:152421

    CAS  PubMed  Google Scholar 

  102. Lo Y-H, Karlsson K, Kuo CJ (2020) Applications of organoids for cancer biology and precision medicine. Nat Cancer 1:761–773

    PubMed  PubMed Central  Google Scholar 

  103. Secondo LE, Liu NJ, Lewinski NA (2017) Methodological considerations when conducting in vitro, air–liquid interface exposures to engineered nanoparticle aerosols. Crit Rev Toxicol 47:225–262

    CAS  PubMed  Google Scholar 

  104. Klumpp J, Bertelli L (2017) KDEP: a resource for calculating particle deposition in the respiratory tract. Health Phys 113:110–121

    CAS  PubMed  Google Scholar 

  105. Manojkumar N, Srimuruganandam B, Nagendra SS (2019) Application of multiple-path particle dosimetry model for quantifying age specified deposition of particulate matter in human airway. Ecotoxicol Environ Saf 168:241–248

    CAS  PubMed  Google Scholar 

  106. Chortarea S, Barosova H, Clift MJD et al (2017) Human asthmatic bronchial cells are more susceptible to subchronic repeated exposures of aerosolized carbon nanotubes at occupationally relevant doses than healthy cells. ACS Nano 11:7615–7625

    CAS  PubMed  Google Scholar 

  107. Fröhlich E (2018) Comparison of conventional and advanced in vitro models in the toxicity testing of nanoparticles. Artif Cells Nanomed Biotechnol 46:1091–1107

    PubMed  PubMed Central  Google Scholar 

  108. Baldassi D, Gabold B, Merkel OM (2021) Air- liquid Interface cultures of the healthy and diseased human respiratory tract: promises, challenges, and future directions. Adv NanoBiomed Res 1:2000111

    CAS  PubMed  PubMed Central  Google Scholar 

  109. Gindele JA, Kiechle T, Benediktus K et al (2020) Intermittent exposure to whole cigarette smoke alters the differentiation of primary small airway epithelial cells in the air-liquid interface culture. Sci Rep 10:1–17

    Google Scholar 

  110. Bishop E, Haswell L, Adamson J et al (2019) An approach to testing undiluted e-cigarette aerosol in vitro using 3D reconstituted human airway epithelium. Toxicol In Vitro 54:391–401

    CAS  PubMed  Google Scholar 

  111. Schamberger AC, Staab-Weijnitz CA, Mise-Racek N, Eickelberg O (2015) Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface. Sci Rep 5:1–9

    Google Scholar 

  112. Juarez-Facio AT, Castilla C, Corbière C et al (2022) Development of a standardized in vitro approach to evaluate microphysical, chemical, and toxicological properties of combustion-derived fine and ultrafine particles. J Environ Sci 113:104–117

    CAS  Google Scholar 

  113. Vaughan A, Stevanovic S, Banks AP et al (2019) The cytotoxic, inflammatory and oxidative potential of coconut oil-substituted diesel emissions on bronchial epithelial cells at an air-liquid interface. Environ Sci Pollut Res 26:27783–27791

    CAS  Google Scholar 

  114. Kanashova T, Sippula O, Oeder S et al (2018) Emissions from a modern log wood masonry heater and wood pellet boiler: composition and biological impact on air-liquid interface exposed human lung cancer cells. J Mol Clin Med 1:23–35

    Google Scholar 

  115. Ihantola T, Di Bucchianico S, Happo M et al (2020) Influence of wood species on toxicity of log-wood stove combustion aerosols: a parallel animal and air-liquid interface cell exposure study on spruce and pine smoke. Part Fibre Toxicol 17:1–26

    Google Scholar 

  116. Wang Q, Ahmad Khan N, Muthumalage T et al (2019) Dysregulated repair and inflammatory responses by e-cigarette-derived inhaled nicotine and humectant propylene glycol in a sex-dependent manner in mouse lung. FASEB Bio Adv 1:609–623

    CAS  Google Scholar 

  117. Amatngalim GD, Schrumpf JA, Henic A et al (2017) Antibacterial defense of human airway epithelial cells from chronic obstructive pulmonary disease patients induced by acute exposure to nontypeable Haemophilus influenzae: modulation by cigarette smoke. J Innate Immun 9:359–374

    CAS  PubMed  PubMed Central  Google Scholar 

  118. Huang S, Wiszniewski L, Constant S, Roggen E (2013) Potential of in vitro reconstituted 3D human airway epithelia (MucilAir™) to assess respiratory sensitizers. Toxicol In Vitro 27:1151–1156

    CAS  PubMed  Google Scholar 

  119. Gohlsch K, Mückter H, Steinritz D et al (2019) Exposure of 19 substances to lung A549 cells at the air liquid interface or under submerged conditions reveals high correlation between cytotoxicity in vitro and CLP classifications for acute lung toxicity. Toxicol Lett 316:119–126

    CAS  PubMed  Google Scholar 

  120. Dwivedi AM, Upadhyay S, Johanson G et al (2018) Inflammatory effects of acrolein, crotonaldehyde and hexanal vapors on human primary bronchial epithelial cells cultured at air-liquid interface. Toxicol In Vitro 46:219–228

    CAS  PubMed  Google Scholar 

  121. Chary A, Serchi T, Moschini E et al (2019) An in vitro coculture system for the detection of sensitization following aerosol exposure. ALTEX-Altern Anim Ex 36:403–418

    Google Scholar 

  122. Henson TE, Navratilova J, Tennant AH et al (2019) In vitro intestinal toxicity of copper oxide nanoparticles in rat and human cell models. Nanotoxicology 13:795–811

    CAS  PubMed  PubMed Central  Google Scholar 

  123. Pinďáková L, Kašpárková V, Kejlová K et al (2017) Behaviour of silver nanoparticles in simulated saliva and gastrointestinal fluids. Int J Pharm 527:12–20

    PubMed  Google Scholar 

  124. Miethling-Graff R, Rumpker R, Richter M et al (2014) Exposure to silver nanoparticles induces size-and dose-dependent oxidative stress and cytotoxicity in human colon carcinoma cells. Toxicol In Vitro 28:1280–1289

    CAS  PubMed  Google Scholar 

  125. Williams KM, Gokulan K, Cerniglia CE, Khare S (2016) Size and dose dependent effects of silver nanoparticle exposure on intestinal permeability in an in vitro model of the human gut epithelium. J Nanobiotechnol 14:1–13

    Google Scholar 

  126. Horie M, Saito A, Mikami Y et al (2012) Characterization of human lung cancer-associated fibroblasts in three-dimensional in vitro co-culture model. Biochem Biophys Res Commun 423:158–163

    CAS  PubMed  Google Scholar 

  127. Correia LL, Johnson J-A, McErlean P et al (2017) SOX2 drives bronchial dysplasia in a novel organotypic model of early human squamous lung cancer. Am J Respir Crit Care Med 195:1494–1508

    CAS  PubMed  PubMed Central  Google Scholar 

  128. Han K, Pierce SE, Li A et al (2020) CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature 580:136–141

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Di Liello R, Ciaramella V, Barra G et al (2019) Ex vivo lung cancer spheroids resemble treatment response of a patient with NSCLC to chemotherapy and immunotherapy: case report and translational study. ESMO open 4:e000536

    PubMed  PubMed Central  Google Scholar 

  130. Meenach SA, Tsoras AN, McGARRY RC et al (2016) Development of three-dimensional lung multicellular spheroids in air-and liquid-interface culture for the evaluation of anticancer therapeutics. Int J Oncol 48:1701–1709

    CAS  PubMed  PubMed Central  Google Scholar 

  131. Gupta SK, Torrico Guzmán EA, Meenach SA (2017) Coadministration of a tumor-penetrating peptide improves the therapeutic efficacy of paclitaxel in a novel air-grown lung cancer 3D spheroid model. Int J Cancer 141:2143–2153

    CAS  PubMed  PubMed Central  Google Scholar 

  132. Kilin V, Mas C, Constant S et al (2017) Health state dependent multiphoton induced autofluorescence in human 3D in vitro lung cancer model. Sci Rep 7:1–10

    CAS  Google Scholar 

  133. Mármol I, Sánchez-de-Diego C, Pradilla Dieste A et al (2017) Colorectal carcinoma: a general overview and future perspectives in colorectal cancer. Int J Mol Sci 18:197

    PubMed  PubMed Central  Google Scholar 

  134. Elbadawy M, Usui T, Yamawaki H, Sasaki K (2018) Development of an experimental model for analyzing drug resistance in colorectal cancer. Cancers 10:164

    PubMed  PubMed Central  Google Scholar 

  135. Ootani A, Li X, Sangiorgi E et al (2009) Sustained in vitro intestinal epithelial culture within a Wnt-dependent stem cell niche. Nat Med 15:701–706

    CAS  PubMed  PubMed Central  Google Scholar 

  136. Usui T, Sakurai M, Enjoji S, et al (2016) Establishment of a novel model for anticancer drug resistance in three-dimensional primary culture of tumor microenvironment. Stem Cells Int 2016

    Google Scholar 

  137. Idris M, Alves MM, Hofstra RM et al (1876) Intestinal multicellular organoids to study colorectal cancer. Biochimica et Biophysica Acta (BBA)-reviews on. Cancer 2021:188586

    Google Scholar 

  138. Commandeur S, De Gruijl FR, Willemze R et al (2009) An in vitro three-dimensional model of primary human cutaneous squamous cell carcinoma. Exp Dermatol 18:849–856

    PubMed  Google Scholar 

  139. Meier F, Nesbit M, Hsu M-Y et al (2000) Human melanoma progression in skin reconstructs: biological significance of bFGF. Am J Pathol 156:193–200

    CAS  PubMed  PubMed Central  Google Scholar 

  140. Bienkowska-Haba M, Luszczek W, Myers JE et al (2018) A new cell culture model to genetically dissect the complete human papillomavirus life cycle. PLoS Pathog 14:e1006846

    PubMed  PubMed Central  Google Scholar 

  141. Nayernia Z, Turchi L, Cosset E et al (2013) The relationship between brain tumor cell invasion of engineered neural tissues and in vivo features of glioblastoma. Biomaterials 34:8279–8290

    CAS  PubMed  Google Scholar 

  142. Reus AA, Maas WJ, Jansen HT et al (2014) Feasibility of a 3D human airway epithelial model to study respiratory absorption. Toxicol In Vitro 28:258–264

    CAS  PubMed  Google Scholar 

  143. Acosta MF, Muralidharan P, Meenach SA et al (2016) In vitro pulmonary cell culture in pharmaceutical inhalation aerosol delivery: 2-D, 3-D, and in situ bioimpactor models. Curr Pharm Des 22:2522–2531

    CAS  PubMed  Google Scholar 

  144. Lenz A-G, Stoeger T, Cei D et al (2014) Efficient bioactive delivery of aerosolized drugs to human pulmonary epithelial cells cultured in air–liquid interface conditions. Am J Respir Cell Mol Biol 51:526–535

    PubMed  Google Scholar 

  145. Lin H, Li H, Cho H-J et al (2007) Air-liquid interface (ALI) culture of human bronchial epithelial cell monolayers as an in vitro model for airway drug transport studies. J Pharm Sci 96:341–350

    CAS  PubMed  Google Scholar 

  146. Hoffmann W, Gradinaru J, Farcal L et al (2018) Establishment of a human 3D tissue-based assay for upper respiratory tract absorption. Appl In Vitro Toxicol 4:139–148

    CAS  Google Scholar 

  147. Lu R, Zhao X, Li J et al (2020) Genomic characterisation and epidemiology of 2019 novel coronavirus: implications for virus origins and receptor binding. Lancet 395:565–574

    CAS  PubMed  PubMed Central  Google Scholar 

  148. Boccellato F, Woelffling S, Imai-Matsushima A et al (2019) Polarised epithelial monolayers of the gastric mucosa reveal insights into mucosal homeostasis and defence against infection. Gut 68:400–413

    CAS  PubMed  Google Scholar 

  149. Egles C, Garlick JA, Shamis Y (2010) Three-dimensional human tissue models of wounded skin. In: Epidermal cells. Springer, pp 345–359

    Google Scholar 

  150. El Ghalbzouri A, Hensbergen P, Gibbs S et al (2004) Fibroblasts facilitate re-epithelialization in wounded human skin equivalents. Lab Investig 84:102–112

    PubMed  Google Scholar 

  151. de Breij A, Haisma EM, Rietveld M et al (2012) Three-dimensional human skin equivalent as a tool to study Acinetobacter baumannii colonization. Antimicrob Agents Chemother 56:2459–2464

    PubMed  PubMed Central  Google Scholar 

  152. Shepherd J, Douglas I, Rimmer S et al (2009) Development of three-dimensional tissue-engineered models of bacterial infected human skin wounds. Tissue Eng Part C Methods 15:475–484

    PubMed  Google Scholar 

  153. Jandhyala SM, Talukdar R, Subramanyam C et al (2015) Role of the normal gut microbiota. World J Gastroenterol: WJG 21:8787

    CAS  PubMed  PubMed Central  Google Scholar 

  154. Bhatia SN, Ingber DE (2014) Microfluidic organs-on-chips. Nat Biotechnol 32:760–772

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Luisana Di Cristo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Di Cristo, L., Sabella, S. (2023). Cell Cultures at the Air–Liquid Interface and Their Application in Cancer Research. In: Movia, D., Prina-Mello, A. (eds) Cancer Cell Culture. Methods in Molecular Biology, vol 2645. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3056-3_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3056-3_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3055-6

  • Online ISBN: 978-1-0716-3056-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics