Skip to main content

Utilization of Air–Liquid Interface Cultures as an In Vitro Model to Assess Primary Airway Epithelial Cell Responses to the Type 2 Cytokine Interleukin-13

  • Protocol
  • First Online:
Type 2 Immunity

Part of the book series: Methods in Molecular Biology ((MIMB,volume 1799))

Abstract

The airway epithelium lines the respiratory tract and provides the primary protective barrier against inhalational insults including toxic environmental substances and microorganisms. The airway epithelium also plays a critical role in regulating airway immune responses. The airway epithelial response to the type 2 cytokine, interleukin-13 (IL-13), is critical to airway inflammation, mucus production, and airway hyperresponsiveness present in asthma. Relevant primary cell models of the human airway epithelium are needed to investigate the biology of IL-13-mediated airway epithelial effects. Here, we describe the generation of a differentiated mucociliary human airway epithelium using an in vitro air–liquid interface (ALI) culture model system. We also describe methods to stimulate this culture model with IL-13 and harvest cells and biomolecules to interrogate cellular and molecular aspects of the airway epithelial IL-13 response.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fahy JV (2015) Type 2 inflammation in asthma—present in most, absent in many. Nat Rev Immunol 15(1):57–65. https://doi.org/10.1038/nri3786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Dunican EM, Fahy JV (2015) The role of Type 2 inflammation in the pathogenesis of asthma exacerbations. Ann Am Thorac Soc 12(Suppl 2):S144–S149. https://doi.org/10.1513/AnnalsATS.201506-377AW

    Article  PubMed  PubMed Central  Google Scholar 

  3. Woodruff PG, Modrek B, Choy DF, Jia G, Abbas AR, Ellwanger A, Koth LL, Arron JR, Fahy JV (2009) T-helper type 2-driven inflammation defines major subphenotypes of asthma. Am J Respir Crit Care Med 180(5):388–395. https://doi.org/10.1164/rccm.200903-0392OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Wenzel SE (2006) Asthma: defining of the persistent adult phenotypes. Lancet 368(9537):804–813. https://doi.org/10.1016/S0140-6736(06)69290-8

    Article  CAS  PubMed  Google Scholar 

  5. Hershey GK (2003) IL-13 receptors and signaling pathways: an evolving web. J Allergy Clin Immunol 111(4):677–690. quiz 691

    Article  CAS  Google Scholar 

  6. Kuperman DA, Huang X, Koth LL, Chang GH, Dolganov GM, Zhu Z, Elias JA, Sheppard D, Erle DJ (2002) Direct effects of interleukin-13 on epithelial cells cause airway hyperreactivity and mucus overproduction in asthma. Nat Med 8(8):885–889. https://doi.org/10.1038/nm734

    Article  CAS  PubMed  Google Scholar 

  7. Grunig G, Warnock M, Wakil AE, Venkayya R, Brombacher F, Rennick DM, Sheppard D, Mohrs M, Donaldson DD, Locksley RM, Corry DB (1998) Requirement for IL-13 independently of IL-4 in experimental asthma. Science 282(5397):2261–2263

    Article  CAS  Google Scholar 

  8. Wills-Karp M, Luyimbazi J, Xu X, Schofield B, Neben TY, Karp CL, Donaldson DD (1998) Interleukin-13: central mediator of allergic asthma. Science 282(5397):2258–2261

    Article  CAS  Google Scholar 

  9. Poole A, Urbanek C, Eng C, Schageman J, Jacobson S, O'Connor BP, Galanter JM, Gignoux CR, Roth LA, Kumar R, Lutz S, Liu AH, Fingerlin TE, Setterquist RA, Burchard EG, Rodriguez-Santana J, Seibold MA (2014) Dissecting childhood asthma with nasal transcriptomics distinguishes subphenotypes of disease. J Allergy Clin Immunol 133(3):670–678. e612. https://doi.org/10.1016/j.jaci.2013.11.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Reynolds SD, Rios C, Wesolowska-Andersen A, Zhuang Y, Pinter M, Happoldt C, Hill CL, Lallier SW, Cosgrove GP, Solomon GM, Nichols DP, Seibold MA (2016) Airway progenitor clone formation is enhanced by Y-27632-dependent changes in the transcriptome. Am J Respir Cell Mol Biol 55(3):323–336. https://doi.org/10.1165/rcmb.2015-0274MA

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Liu X, Ory V, Chapman S, Yuan H, Albanese C, Kallakury B, Timofeeva OA, Nealon C, Dakic A, Simic V, Haddad BR, Rhim JS, Dritschilo A, Riegel A, McBride A, Schlegel R (2012) ROCK inhibitor and feeder cells induce the conditional reprogramming of epithelial cells. Am J Pathol 180(2):599–607. https://doi.org/10.1016/j.ajpath.2011.10.036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Suprynowicz FA, Upadhyay G, Krawczyk E, Kramer SC, Hebert JD, Liu X, Yuan H, Cheluvaraju C, Clapp PW, Boucher RC, Jr., Kamonjoh CM, Randell SH, Schlegel R (2012) Conditionally reprogrammed cells represent a stem-like state of adult epithelial cells. Proc Natl Acad Sci U S A 109 (49):20,035–20,040. doi:https://doi.org/10.1073/pnas.1213241109

  13. Pezzulo AA, Starner TD, Scheetz TE, Traver GL, Tilley AE, Harvey BG, Crystal RG, PB MC Jr, Zabner J (2011) The air-liquid interface and use of primary cell cultures are important to recapitulate the transcriptional profile of in vivo airway epithelia. Am J Physiol Lung Cell Mol Physiol 300(1):L25–L31. https://doi.org/10.1152/ajplung.00256.2010

    Article  CAS  PubMed  Google Scholar 

  14. Kesimer M, Kirkham S, Pickles RJ, Henderson AG, Alexis NE, Demaria G, Knight D, Thornton DJ, Sheehan JK (2009) Tracheobronchial air-liquid interface cell culture: a model for innate mucosal defense of the upper airways? Am J Physiol Lung Cell Mol Physiol 296(1):L92–L100. https://doi.org/10.1152/ajplung.90388.2008

    Article  CAS  PubMed  Google Scholar 

  15. de Jong PM, van Sterkenburg MA, Hesseling SC, Kempenaar JA, Mulder AA, Mommaas AM, Dijkman JH, Ponec M (1994) Ciliogenesis in human bronchial epithelial cells cultured at the air-liquid interface. Am J Respir Cell Mol Biol 10(3):271–277. https://doi.org/10.1165/ajrcmb.10.3.8117445

    Article  PubMed  Google Scholar 

  16. Hirst RA, Jackson CL, Coles JL, Williams G, Rutman A, Goggin PM, Adam EC, Page A, Evans HJ, Lackie PM, O'Callaghan C, Lucas JS (2014) Culture of primary ciliary dyskinesia epithelial cells at air-liquid interface can alter ciliary phenotype but remains a robust and informative diagnostic aid. PLoS One 9(2):e89675. https://doi.org/10.1371/journal.pone.0089675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Jiang D, Berman R, Wu Q, Stevenson C, Chu HW (2016) The anti-inflammatory effect of alpha-1 antitrypsin in rhinovirus-infected human airway epithelial cells. J Clin Cell Immunol 7(6):475. https://doi.org/10.4172/2155-9899.1000475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wu NH, Yang W, Beineke A, Dijkman R, Matrosovich M, Baumgartner W, Thiel V, Valentin-Weigand P, Meng F, Herrler G (2016) The differentiated airway epithelium infected by influenza viruses maintains the barrier function despite a dramatic loss of ciliated cells. Sci Rep 6:39668. https://doi.org/10.1038/srep39668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mathis C, Poussin C, Weisensee D, Gebel S, Hengstermann A, Sewer A, Belcastro V, Xiang Y, Ansari S, Wagner S, Hoeng J, Peitsch MC (2013) Human bronchial epithelial cells exposed in vitro to cigarette smoke at the air-liquid interface resemble bronchial epithelium from human smokers. Am J Physiol Lung Cell Mol Physiol 304(7):L489–L503. https://doi.org/10.1152/ajplung.00181.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Schamberger AC, Staab-Weijnitz CA, Mise-Racek N, Eickelberg O (2015) Cigarette smoke alters primary human bronchial epithelial cell differentiation at the air-liquid interface. Sci Rep 5:8163. https://doi.org/10.1038/srep08163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamie L. Everman .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Everman, J.L., Rios, C., Seibold, M.A. (2018). Utilization of Air–Liquid Interface Cultures as an In Vitro Model to Assess Primary Airway Epithelial Cell Responses to the Type 2 Cytokine Interleukin-13. In: Reinhardt, R. (eds) Type 2 Immunity. Methods in Molecular Biology, vol 1799. Humana, New York, NY. https://doi.org/10.1007/978-1-4939-7896-0_30

Download citation

  • DOI: https://doi.org/10.1007/978-1-4939-7896-0_30

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-4939-7895-3

  • Online ISBN: 978-1-4939-7896-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics