Skip to main content

Mouse Models to Study Peroxisomal Functions and Disorders: Overview, Caveats, and Recommendations

  • Protocol
  • First Online:
Peroxisomes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2643))

  • 897 Accesses

Abstract

During the last three decades many mouse lines were created or identified that are deficient in one or more peroxisomal functions. Different methodologies were applied to obtain global, hypomorph, cell type selective, inducible, and knockin mice. Whereas some models closely mimic pathologies in patients, others strongly deviate or no human counterpart has been reported. Often, mice, apparently endowed with a stronger transcriptional adaptation, have to be challenged with dietary additions or restrictions in order to trigger phenotypic changes. Depending on the inactivated peroxisomal protein, several approaches can be taken to validate the loss-of-function. Here, an overview is given of the available mouse models and their most important characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Waterham HR, Ferdinandusse S, Wanders RJ (2016) Human disorders of peroxisome metabolism and biogenesis. Biochim Biophys Acta 1863(5):922ā€“933. https://doi.org/10.1016/j.bbamcr.2015.11.015

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  2. Baes M, Van Veldhoven PP (2012) Mouse models for peroxisome biogenesis defects and beta-oxidation enzyme deficiencies. Biochim Biophys Acta 1822(9):1489ā€“1500. https://doi.org/10.1016/j.bbadis.2012.03.003

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  3. Yamashita S, Abe K, Tatemichi Y, Fujiki Y (2014) The membrane peroxin PEX3 induces peroxisome-ubiquitination-linked pexophagy. Autophagy 10(9):1549ā€“1564. https://doi.org/10.4161/auto.29329

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  4. Reuter M, Kooshapur H, Suda JG, Gaussmann S, Neuhaus A, Bruhl L, Bharti P, Jung M, Schliebs W, Sattler M, Erdmann R (2021) Competitive microtubule binding of PEX14 coordinates peroxisomal protein import and motility. J Mol Biol 433(5):166765. https://doi.org/10.1016/j.jmb.2020.166765

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  5. Baes M, Gressens P, Baumgart E, Carmeliet P, Casteels M, Fransen M, Evrard P, Fahimi D, Declercq PE, Collen D, van Veldhoven PP, Mannaerts GP (1997) A mouse model for Zellweger syndrome. Nat Genet 17(1):49ā€“57. https://doi.org/10.1038/ng0997-49

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  6. Faust PL, Hatten ME (1997) Targeted deletion of the PEX2 peroxisome assembly gene in mice provides a model for Zellweger syndrome, a human neuronal migration disorder. J Cell Biol 139(5):1293ā€“1305. https://doi.org/10.1083/jcb.139.5.1293

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  7. Maxwell M, Bjorkman J, Nguyen T, Sharp P, Finnie J, Paterson C, Tonks I, Paton BC, Kay GF, Crane DI (2003) Pex13 inactivation in the mouse disrupts peroxisome biogenesis and leads to a Zellweger syndrome phenotype. Mol Cell Biol 23(16):5947ā€“5957. https://doi.org/10.1128/MCB.23.16.5947-5957.2003

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  8. Hanson MG, Fregoso VL, Vrana JD, Tucker CL, Niswander LA (2014) Peripheral nervous system defects in a mouse model for peroxisomal biogenesis disorders. Dev Biol 395(1):84ā€“95. https://doi.org/10.1016/j.ydbio.2014.08.026

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  9. Abe Y, Honsho M, Itoh R, Kawaguchi R, Fujitani M, Fujiwara K, Hirokane M, Matsuzaki T, Nakayama K, Ohgi R, Marutani T, Nakayama KI, Yamashita T, Fujiki Y (2018) Peroxisome biogenesis deficiency attenuates the BDNF-TrkB pathway-mediated development of the cerebellum. Life Sci Alliance 1(6):e201800062. https://doi.org/10.26508/lsa.201800062

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  10. Hiebler S, Masuda T, Hacia JG, Moser AB, Faust PL, Liu A, Chowdhury N, Huang N, Lauer A, Bennett J, Watkins PA, Zack DJ, Braverman NE, Raymond GV, Steinberg SJ (2014) The Pex1-G844D mouse: a model for mild human Zellweger spectrum disorder. Mol Genet Metab 111(4):522ā€“532. https://doi.org/10.1016/j.ymgme.2014.01.008

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  11. Argyriou C, Polosa A, Cecyre B, Hsieh M, Di Pietro E, Cui W, Bouchard JF, Lachapelle P, Braverman N (2019) A longitudinal study of retinopathy in the PEX1-Gly844Asp mouse model for mild Zellweger Spectrum Disorder. Exp Eye Res 186:107713. https://doi.org/10.1016/j.exer.2019.107713

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  12. Argyriou C, Polosa A, Song JY, Omri S, Steele B, Cecyre B, McDougald DS, Di Pietro E, Bouchard JF, Bennett J, Hacia JG, Lachapelle P, Braverman NE (2021) AAV-mediated PEX1 gene augmentation improves visual function in the PEX1-Gly844Asp mouse model for mild Zellweger spectrum disorder. Mol Ther Methods Clin Dev 23:225ā€“240. https://doi.org/10.1016/j.omtm.2021.09.002

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  13. Berendse K, Boek M, Gijbels M, Van der Wel NN, Klouwer FC, van den Bergh-Weerman MA, Shinde AB, Ofman R, Poll-The BT, Houten SM, Baes M, Wanders RJA, Waterham HR (2019) Liver disease predominates in a mouse model for mild human Zellweger spectrum disorder. Biochim Biophys Acta Mol basis Dis 1865(10):2774ā€“2787. https://doi.org/10.1016/j.bbadis.2019.06.013

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  14. Demaret T, Roumain M, Ambroise J, Evraerts J, Ravau J, Bouzin C, Bearzatto B, Gala JL, Stepman H, Marie S, Vincent MF, Muccioli GG, Najimi M, Sokal EM (1866) Longitudinal study of Pex1-G844D NMRI mouse model: a robust pre-clinical model for mild Zellweger spectrum disorder. Biochim Biophys Acta Mol basis Dis 2020(11):165900. https://doi.org/10.1016/j.bbadis.2020.165900

    ArticleĀ  CASĀ  Google ScholarĀ 

  15. Faust PL (2003) Abnormal cerebellar histogenesis in PEX2 Zellweger mice reflects multiple neuronal defects induced by peroxisome deficiency. J Comp Neurol 461(3):394ā€“413. https://doi.org/10.1002/cne.10699

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  16. Keane MH, Overmars H, Wikander TM, Ferdinandusse S, Duran M, Wanders RJ, Faust PL (2007) Bile acid treatment alters hepatic disease and bile acid transport in peroxisome-deficient PEX2 Zellweger mice. Hepatology 45(4):982ā€“997. https://doi.org/10.1002/hep.21532

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  17. Kovacs WJ, Shackelford JE, Tape KN, Richards MJ, Faust PL, Fliesler SJ, Krisans SK (2004) Disturbed cholesterol homeostasis in a peroxisome-deficient PEX2 knockout mouse model. Mol Cell Biol 24(1):1ā€“13. https://doi.org/10.1128/MCB.24.1.1-13.2004

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  18. Janssen A, Baes M, Gressens P, Mannaerts GP, Declercq P, Van Veldhoven PP (2000) Docosahexaenoic acid deficit is not a major pathogenic factor in peroxisome-deficient mice. Lab Investig 80(1):31ā€“35. https://doi.org/10.1038/labinvest.3780005

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  19. Vanhorebeek I, Baes M, Declercq PE (2001) Isoprenoid biosynthesis is not compromised in a Zellweger syndrome mouse model. Biochim Biophys Acta 1532(1-2):28ā€“36. https://doi.org/10.1016/s1388-1981(01)00108-1

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  20. Hogenboom S, Romeijn GJ, Houten SM, Baes M, Wanders RJ, Waterham HR (2002) Absence of functional peroxisomes does not lead to deficiency of enzymes involved in cholesterol biosynthesis. J Lipid Res 43(1):90ā€“98

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  21. Baumgart E, Vanhorebeek I, Grabenbauer M, Borgers M, Declercq PE, Fahimi HD, Baes M (2001) Mitochondrial alterations caused by defective peroxisomal biogenesis in a mouse model for Zellweger syndrome (PEX5 knockout mouse). Am J Pathol 159(4):1477ā€“1494. https://doi.org/10.1016/S0002-9440(10)62534-5

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  22. Janssen A, Gressens P, Grabenbauer M, Baumgart E, Schad A, Vanhorebeek I, Brouwers A, Declercq PE, Fahimi D, Evrard P, Schoonjans L, Collen D, Carmeliet P, Mannaerts G, Van Veldhoven P, Baes M (2003) Neuronal migration depends on intact peroxisomal function in brain and in extraneuronal tissues. J Neurosci 23(30):9732ā€“9741

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  23. Dirkx R, Vanhorebeek I, Martens K, Schad A, Grabenbauer M, Fahimi D, Declercq P, Van Veldhoven PP, Baes M (2005) Absence of peroxisomes in mouse hepatocytes causes mitochondrial and ER abnormalities. Hepatology 41(4):868ā€“878. https://doi.org/10.1002/hep.20628

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  24. Huyghe S, Mannaerts GP, Baes M, Van Veldhoven PP (2006) Peroxisomal multifunctional protein-2: the enzyme, the patients and the knockout mouse model. Biochim Biophys Acta 1761(9):973ā€“994. https://doi.org/10.1016/j.bbalip.2006.04.006

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  25. Baboota RK, Shinde AB, Lemaire K, Fransen M, Vinckier S, Van Veldhoven PP, Schuit F, Baes M (2019) Functional peroxisomes are required for beta-cell integrity in mice. Mol Metab 22:71ā€“83. https://doi.org/10.1016/j.molmet.2019.02.001

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  26. Bottelbergs A, Verheijden S, Hulshagen L, Gutmann DH, Goebbels S, Nave KA, Kassmann C, Baes M (2010) Axonal integrity in the absence of functional peroxisomes from projection neurons and astrocytes. Glia 58(13):1532ā€“1543. https://doi.org/10.1002/glia.21027

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  27. Fahimi HD (2017) Cytochemical detection of peroxisomes in light and electron microscopy with 3,3ā€²-diaminobenzidine. Methods Mol Biol 1595:93ā€“100. https://doi.org/10.1007/978-1-4939-6937-1_10

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  28. Lemaire K, Thorrez L, Schuit F (2016) Disallowed and allowed gene expression: two faces of mature Islet beta cells. Annu Rev Nutr 36:45ā€“71. https://doi.org/10.1146/annurev-nutr-071715-050808

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  29. Muller CC, Nguyen TH, Ahlemeyer B, Meshram M, Santrampurwala N, Cao S, Sharp P, Fietz PB, Baumgart-Vogt E, Crane DI (2011) PEX13 deficiency in mouse brain as a model of Zellweger syndrome: abnormal cerebellum formation, reactive gliosis and oxidative stress. Dis Model Mech 4(1):104ā€“119. https://doi.org/10.1242/dmm.004622

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  30. Santos MJ, Imanaka T, Shio H, Small GM, Lazarow PB (1988) Peroxisomal membrane ghosts in Zellweger syndrome ā€“ aberrant organelle assembly. Science 239(4847):1536ā€“1538. https://doi.org/10.1126/science.3281254

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  31. Krysko O, Hulshagen L, Janssen A, Schutz G, Klein R, De Bruycker M, Espeel M, Gressens P, Baes M (2007) Neocortical and cerebellar developmental abnormalities in conditions of selective elimination of peroxisomes from brain or from liver. J Neurosci Res 85(1):58ā€“72. https://doi.org/10.1002/jnr.21097

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  32. Hulshagen L, Krysko O, Bottelbergs A, Huyghe S, Klein R, Van Veldhoven PP, De Deyn PP, D'Hooge R, Hartmann D, Baes M (2008) Absence of functional peroxisomes from mouse CNS causes dysmyelination and axon degeneration. J Neurosci 28(15):4015ā€“4027. https://doi.org/10.1523/JNEUROSCI.4968-07.2008

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  33. Kassmann CM, Lappe-Siefke C, Baes M, Brugger B, Mildner A, Werner HB, Natt O, Michaelis T, Prinz M, Frahm J, Nave KA (2007) Axonal loss and neuroinflammation caused by peroxisome-deficient oligodendrocytes. Nat Genet 39(8):969ā€“976. https://doi.org/10.1038/ng2070

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  34. Kassmann CM, Quintes S, Rietdorf J, Mobius W, Sereda MW, Nientiedt T, Saher G, Baes M, Nave KA (2011) A role for myelin-associated peroxisomes in maintaining paranodal loops and axonal integrity. FEBS Lett 585(14):2205ā€“2211. https://doi.org/10.1016/j.febslet.2011.05.032

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  35. Kleinecke S, Richert S, de Hoz L, Brugger B, Kungl T, Asadollahi E, Quintes S, Blanz J, McGonigal R, Naseri K, Sereda MW, Sachsenheimer T, Luchtenborg C, Mobius W, Willison H, Baes M, Nave KA, Kassmann CM (2017) Peroxisomal dysfunctions cause lysosomal storage and axonal Kv1 channel redistribution in peripheral neuropathy. elife 6. https://doi.org/10.7554/eLife.23332

  36. Peeters A, Fraisl P, van den Berg S, Ver Loren van Themaat E, Van Kampen A, Rider MH, Takemori H, van Dijk KW, Van Veldhoven PP, Carmeliet P, Baes M (2011) Carbohydrate metabolism is perturbed in peroxisome-deficient hepatocytes due to mitochondrial dysfunction, AMP-activated protein kinase (AMPK) activation, and peroxisome proliferator-activated receptor gamma coactivator 1alpha (PGC-1alpha) suppression. J Biol Chem 286(49):42162ā€“42179. https://doi.org/10.1074/jbc.M111.299727

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  37. Peeters A, Swinnen JV, Van Veldhoven PP, Baes M (2011) Hepatosteatosis in peroxisome deficient liver despite increased beta-oxidation capacity and impaired lipogenesis. Biochimie 93(10):1828ā€“1838. https://doi.org/10.1016/j.biochi.2011.06.034

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  38. Peeters A, Shinde AB, Dirkx R, Smet J, De Bock K, Espeel M, Vanhorebeek I, Vanlander A, Van Coster R, Carmeliet P, Fransen M, Van Veldhoven PP, Baes M (2015) Mitochondria in peroxisome-deficient hepatocytes exhibit impaired respiration, depleted DNA, and PGC-1 alpha independent proliferation. Biochim Biophys Acta 1853(2):285ā€“298. https://doi.org/10.1016/j.bbamcr.2014.11.017

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  39. Shinde AB, Baboota RK, Denis S, Loizides-Mangold U, Peeters A, Espeel M, Malheiro AR, Riezman H, Vinckier S, Vaz FM, Brites P, Ferdinandusse S, Van Veldhoven PP, Baes M (2018) Mitochondrial disruption in peroxisome deficient cells is hepatocyte selective but is not mediated by common hepatic peroxisomal metabolites. Mitochondrion 39:51ā€“59. https://doi.org/10.1016/j.mito.2017.08.013

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  40. Martens K, Bottelbergs A, Peeters A, Jacobs F, Espeel M, Carmeliet P, Van Veldhoven PP, Baes M (2012) Peroxisome deficient aP2-Pex5 knockout mice display impaired white adipocyte and muscle function concomitant with reduced adrenergic tone. Mol Genet Metab 107(4):735ā€“747. https://doi.org/10.1016/j.ymgme.2012.10.015

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  41. Ansermet C, Centeno G, Pradervand S, Harmacek D, Garcia A, Daraspe J, Kocherlakota S, Baes M, Bignon Y, Firsov D (2022) Renal tubular peroxisomes are dispensable for normal kidney function. JCI Insight 7(4). https://doi.org/10.1172/jci.insight.155836

  42. Muri J, Corak B, Matsushita M, Baes M, Kopf M (2022) Peroxisomes are critical for the development and maintenance of B1 and marginal zone B cells but dispensable for follicular B cells and T cells. J Immunol 208(4):839ā€“850. https://doi.org/10.4049/jimmunol.2100518

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  43. Swinkels D, Das Y, Kocherlakota S, Vinckier S, Wever E, van Kampen AHC, Vaz FM, Baes M (2022) Cell type-selective loss of peroxisomal beta-oxidation impairs bipolar cell but not photoreceptor survival in the retina. Cell 11(1). https://doi.org/10.3390/cells11010161

  44. Rishi G, Bhatia M, Secondes ES, Melino M, Crane DI (1866) Subramaniam VN (2020) Hepatocyte-specific deletion of peroxisomal protein PEX13 results in disrupted iron homeostasis. Biochim Biophys Acta Mol basis Dis 10:165882. https://doi.org/10.1016/j.bbadis.2020.165882

    ArticleĀ  CASĀ  Google ScholarĀ 

  45. Rahim RS, Meedeniya AC, Crane DI (2014) Central serotonergic neuron deficiency in a mouse model of Zellweger syndrome. Neuroscience 274:229ā€“241. https://doi.org/10.1016/j.neuroscience.2014.05.034

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  46. Rahim RS, St John JA, Crane DI, Meedeniya ACB (2018) Impaired neurogenesis and associated gliosis in mouse brain with PEX13 deficiency. Mol Cell Neurosci 88:16ā€“32. https://doi.org/10.1016/j.mcn.2017.11.015

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  47. Park H, He A, Tan M, Johnson JM, Dean JM, Pietka TA, Chen Y, Zhang X, Hsu FF, Razani B, Funai K, Lodhi IJ (2019) Peroxisome-derived lipids regulate adipose thermogenesis by mediating cold-induced mitochondrial fission. J Clin Invest 129(2):694ā€“711. https://doi.org/10.1172/JCI120606

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  48. Huybrechts SJ, Van Veldhoven PP, Brees C, Mannaerts GP, Los GV, Fransen M (2009) Peroxisome dynamics in cultured mammalian cells. Traffic 10(11):1722ā€“1733. https://doi.org/10.1111/j.1600-0854.2009.00970.x

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  49. Martens K, Bottelbergs A, Baes M (2010) Ectopic recombination in the central and peripheral nervous system by aP2/FABP4-Cre mice: implications for metabolism research. FEBS Lett 584(5):1054ā€“1058. https://doi.org/10.1016/j.febslet.2010.01.061

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  50. Stifter SA, Greter M (2020) STOP floxing around: specificity and leakiness of inducible Cre/loxP systems. Eur J Immunol 50(3):338ā€“341. https://doi.org/10.1002/eji.202048546

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  51. Verheijden S, Bottelbergs A, Krysko O, Krysko DV, Beckers L, De Munter S, Van Veldhoven PP, Wyns S, Kulik W, Nave KA, Ramer MS, Carmeliet P, Kassmann CM, Baes M (2013) Peroxisomal multifunctional protein-2 deficiency causes neuroinflammation and degeneration of Purkinje cells independent of very long chain fatty acid accumulation. Neurobiol Dis 58:258ā€“269. https://doi.org/10.1016/j.nbd.2013.06.006

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  52. Muzumdar MD, Tasic B, Miyamichi K, Li L, Luo L (2007) A global double-fluorescent Cre reporter mouse. Genesis 45(9):593ā€“605. https://doi.org/10.1002/dvg.20335

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  53. Zhao XF, Alam MM, Liao Y, Huang T, Mathur R, Zhu X, Huang Y (2019) Targeting microglia using Cx3cr1-Cre lines: revisiting the specificity. eNeuro 6(4). https://doi.org/10.1523/ENEURO.0114-19.2019

  54. Xiao Y, Karnati S, Qian G, Nenicu A, Fan W, Tchatalbachev S, Holand A, Hossain H, Guillou F, Luers GH, Baumgart-Vogt E (2012) Cre-mediated stress affects sirtuin expression levels, peroxisome biogenesis and metabolism, antioxidant and proinflammatory signaling pathways. PLoS One 7(7):e41097. https://doi.org/10.1371/journal.pone.0041097

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  55. Declercq J, Brouwers B, Pruniau VP, Stijnen P, de Faudeur G, Tuand K, Meulemans S, Serneels L, Schraenen A, Schuit F, Creemers JW (2015) Metabolic and behavioural phenotypes in Nestin-Cre mice are caused by hypothalamic expression of human growth hormone. PLoS One 10(8):e0135502. https://doi.org/10.1371/journal.pone.0135502

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  56. Iacovelli J, Zhao C, Wolkow N, Veldman P, Gollomp K, Ojha P, Lukinova N, King A, Feiner L, Esumi N, Zack DJ, Pierce EA, Vollrath D, Dunaief JL (2011) Generation of Cre transgenic mice with postnatal RPE-specific ocular expression. Invest Ophthalmol Vis Sci 52(3):1378ā€“1383. https://doi.org/10.1167/iovs.10-6347

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  57. Frenz S, Rak K, Volker J, Jurgens L, Scherzad A, Schendzielorz P, Radeloff A, Jablonka S, Hansen S, Mlynski R, Hagen R (2015) Mosaic pattern of Cre recombinase expression in cochlear outer hair cells of the Brn3.1 Cre mouse. Neuroreport 26(6):309ā€“313. https://doi.org/10.1097/WNR.0000000000000336

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  58. Braverman NE, Moser AB (2012) Functions of plasmalogen lipids in health and disease. Biochim Biophys Acta 1822(9):1442ā€“1452. https://doi.org/10.1016/j.bbadis.2012.05.008

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  59. Brites P, Motley AM, Gressens P, Mooyer PA, Ploegaert I, Everts V, Evrard P, Carmeliet P, Dewerchin M, Schoonjans L, Duran M, Waterham HR, Wanders RJ, Baes M (2003) Impaired neuronal migration and endochondral ossification in Pex7 knockout mice: a model for rhizomelic chondrodysplasia punctata. Hum Mol Genet 12(18):2255ā€“2267. https://doi.org/10.1093/hmg/ddg236

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  60. Brites P, Ferreira AS, da Silva TF, Sousa VF, Malheiro AR, Duran M, Waterham HR, Baes M, Wanders RJ (2011) Alkyl-glycerol rescues plasmalogen levels and pathology of ether-phospholipid deficient mice. PLoS One 6(12):e28539. https://doi.org/10.1371/journal.pone.0028539

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  61. da Silva TF, Eira J, Lopes AT, Malheiro AR, Sousa V, Luoma A, Avila RL, Wanders RJ, Just WW, Kirschner DA, Sousa MM, Brites P (2014) Peripheral nervous system plasmalogens regulate Schwann cell differentiation and myelination. J Clin Invest 124(6):2560ā€“2570. https://doi.org/10.1172/JCI72063

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  62. Braverman N, Zhang R, Chen L, Nimmo G, Scheper S, Tran T, Chaudhury R, Moser A, Steinberg S (2010) A Pex7 hypomorphic mouse model for plasmalogen deficiency affecting the lens and skeleton. Mol Genet Metab 99(4):408ā€“416. https://doi.org/10.1016/j.ymgme.2009.12.005

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  63. Brites P, Mooyer PA, El Mrabet L, Waterham HR, Wanders RJ (2009) Plasmalogens participate in very-long-chain fatty acid-induced pathology. Brain 132(Pt 2):482ā€“492. https://doi.org/10.1093/brain/awn295

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  64. Li X, Baumgart E, Dong GX, Morrell JC, Jimenez-Sanchez G, Valle D, Smith KD, Gould SJ (2002) PEX11alpha is required for peroxisome proliferation in response to 4-phenylbutyrate but is dispensable for peroxisome proliferator-activated receptor alpha-mediated peroxisome proliferation. Mol Cell Biol 22(23):8226ā€“8240. https://doi.org/10.1128/MCB.22.23.8226-8240.2002

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  65. Weng H, Ji X, Naito Y, Endo K, Ma X, Takahashi R, Shen C, Hirokawa G, Fukushima Y, Iwai N (2013) Pex11alpha deficiency impairs peroxisome elongation and division and contributes to nonalcoholic fatty liver in mice. Am J Physiol Endocrinol Metab 304(2):E187ā€“E196. https://doi.org/10.1152/ajpendo.00425.2012

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  66. Weng H, Ji X, Endo K, Iwai N (2014) Pex11a deficiency is associated with a reduced abundance of functional peroxisomes and aggravated renal interstitial lesions. Hypertension 64(5):1054ā€“1060. https://doi.org/10.1161/HYPERTENSIONAHA.114.04094

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  67. Garikapati V, Colasante C, Baumgart-Vogt E, Spengler B (2022) Sequential lipidomic, metabolomic, and proteomic analyses of serum, liver, and heart tissue specimens from peroxisomal biogenesis factor 11alpha knockout mice. Anal Bioanal Chem 414(6):2235ā€“2250. https://doi.org/10.1007/s00216-021-03860-0

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  68. Li X, Baumgart E, Morrell JC, Jimenez-Sanchez G, Valle D, Gould SJ (2002) PEX11 beta deficiency is lethal and impairs neuronal migration but does not abrogate peroxisome function. Mol Cell Biol 22(12):4358ā€“4365. https://doi.org/10.1128/MCB.22.12.4358-4365.2002

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  69. Ahlemeyer B, Gottwald M, Baumgart-Vogt E (2012) Deletion of a single allele of the Pex11beta gene is sufficient to cause oxidative stress, delayed differentiation and neuronal death in mouse brain. Dis Model Mech 5(1):125ā€“140. https://doi.org/10.1242/dmm.007708

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  70. Schrader M, Costello JL, Godinho LF, Azadi AS, Islinger M (2016) Proliferation and fission of peroxisomes ā€“ an update. Biochim Biophys Acta 1863(5):971ā€“983. https://doi.org/10.1016/j.bbamcr.2015.09.024

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  71. Chen H, Ren S, Clish C, Jain M, Mootha V, McCaffery JM, Chan DC (2015) Titration of mitochondrial fusion rescues Mff-deficient cardiomyopathy. J Cell Biol 211(4):795ā€“805. https://doi.org/10.1083/jcb.201507035

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  72. Ferdinandusse S, Zomer AW, Komen JC, van den Brink CE, Thanos M, Hamers FP, Wanders RJ, van der Saag PT, Poll-The BT, Brites P (2008) Ataxia with loss of Purkinje cells in a mouse model for Refsum disease. Proc Natl Acad Sci U S A 105(46):17712ā€“17717. https://doi.org/10.1073/pnas.0806066105

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  73. Mezzar S, De Schryver E, Asselberghs S, Meyhi E, Morvay PL, Baes M, Van Veldhoven PP (2017) Phytol-induced pathology in 2-hydroxyacyl-CoA lyase (HACL1) deficient mice. Evidence for a second non-HACL1-related lyase. Biochim Biophys Acta Mol Cell Biol Lipids 1862(9):972ā€“990. https://doi.org/10.1016/j.bbalip.2017.06.004

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  74. Khalil Y, Carrino S, Lin F, Ferlin A, Lad HV, Mazzacuva F, Falcone S, Rivers N, Banks G, Concas D, Aguilar C, Haynes AR, Blease A, Nicol T, Al-Shawi R, Heywood W, Potter P, Mills K, Gale DP, Clayton PT (2022) Tissue proteome of 2-hydroxyacyl-CoA lyase deficient mice reveals peroxisome proliferation and activation of omega-oxidation. Int J Mol Sci 23(2). https://doi.org/10.3390/ijms23020987

  75. Kitamura T, Seki N, Kihara A (2017) Phytosphingosine degradation pathway includes fatty acid alpha-oxidation reactions in the endoplasmic reticulum. Proc Natl Acad Sci U S A 114(13):E2616ā€“E2623. https://doi.org/10.1073/pnas.1700138114

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  76. Van Veldhoven PP (2010) Biochemistry and genetics of inherited disorders of peroxisomal fatty acid metabolism. J Lipid Res 51(10):2863ā€“2895. https://doi.org/10.1194/jlr.R005959

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  77. Fan CY, Pan J, Chu R, Lee D, Kluckman KD, Usuda N, Singh I, Yeldandi AV, Rao MS, Maeda N, Reddy JK (1996) Hepatocellular and hepatic peroxisomal alterations in mice with a disrupted peroxisomal fatty acyl-coenzyme A oxidase gene. J Biol Chem 271(40):24698ā€“24710. https://doi.org/10.1074/jbc.271.40.24698

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  78. Fan CY, Pan J, Usuda N, Yeldandi AV, Rao MS, Reddy JK (1998) Steatohepatitis, spontaneous peroxisome proliferation and liver tumors in mice lacking peroxisomal fatty acyl-CoA oxidase. Implications for peroxisome proliferator-activated receptor alpha natural ligand metabolism. J Biol Chem 273(25):15639ā€“15645. https://doi.org/10.1074/jbc.273.25.15639

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  79. Hashimoto T, Fujita T, Usuda N, Cook W, Qi C, Peters JM, Gonzalez FJ, Yeldandi AV, Rao MS, Reddy JK (1999) Peroxisomal and mitochondrial fatty acid beta-oxidation in mice nullizygous for both peroxisome proliferator-activated receptor alpha and peroxisomal fatty acyl-CoA oxidase. Genotype correlation with fatty liver phenotype. J Biol Chem 274(27):19228ā€“19236. https://doi.org/10.1074/jbc.274.27.19228

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  80. Huang J, Viswakarma N, Yu S, Jia Y, Bai L, Vluggens A, Cherkaoui-Malki M, Khan M, Singh I, Yang G, Rao MS, Borensztajn J, Reddy JK (2011) Progressive endoplasmic reticulum stress contributes to hepatocarcinogenesis in fatty acyl-CoA oxidase 1-deficient mice. Am J Pathol 179(2):703ā€“713. https://doi.org/10.1016/j.ajpath.2011.04.030

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  81. Sheridan R, Lampe K, Shanmukhappa SK, Putnam P, Keddache M, Divanovic S, Bezerra J, Hoebe K (2011) Lampe1: an ENU-germline mutation causing spontaneous hepatosteatosis identified through targeted exon-enrichment and next-generation sequencing. PLoS One 6(7):e21979. https://doi.org/10.1371/journal.pone.0021979

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  82. Moreno-Fernandez ME, Giles DA, Stankiewicz TE, Sheridan R, Karns R, Cappelletti M, Lampe K, Mukherjee R, Sina C, Sallese A, Bridges JP, Hogan SP, Aronow BJ, Hoebe K, Divanovic S (2018) Peroxisomal beta-oxidation regulates whole body metabolism, inflammatory vigor, and pathogenesis of nonalcoholic fatty liver disease. JCI Insight 3(6). https://doi.org/10.1172/jci.insight.93626

  83. Van Veldhoven PP (2018) Phytol-induced pathology in Acox2āˆ’/āˆ’ mice. In: 59th ICBL, Lipid fluxes and metabolism ā€“ from fundamental mechanisms to human disease, September 4ā€“7, Helsinki, p 129

    Google ScholarĀ 

  84. Zhang Y, Lu Z, Zeng W, Zhao J, Zhou X (2021) Two sides of NNMT in alcoholic and non-alcoholic fatty liver development. J Hepatol 74(5):1250ā€“1253. https://doi.org/10.1016/j.jhep.2020.11.049

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  85. Zhang Y, Chen Y, Zhang Z, Tao X, Xu S, Zhang X, Zurashvili T, Lu Z, Bayascas JR, Jin L, Zhao J, Zhou X (2022) Acox2 is a regulator of lysine crotonylation that mediates hepatic metabolic homeostasis in mice. Cell Death Dis 13(3):279. https://doi.org/10.1038/s41419-022-04725-9

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  86. Qi C, Zhu Y, Pan J, Usuda N, Maeda N, Yeldandi AV, Rao MS, Hashimoto T, Reddy JK (1999) Absence of spontaneous peroxisome proliferation in enoyl-CoA Hydratase/L-3-hydroxyacyl-CoA dehydrogenase-deficient mouse liver. Further support for the role of fatty acyl CoA oxidase in PPARalpha ligand metabolism. J Biol Chem 274(22):15775ā€“15780. https://doi.org/10.1074/jbc.274.22.15775

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  87. Houten SM, Denis S, Argmann CA, Jia Y, Ferdinandusse S, Reddy JK, Wanders RJ (2012) Peroxisomal L-bifunctional enzyme (Ehhadh) is essential for the production of medium-chain dicarboxylic acids. J Lipid Res 53(7):1296ā€“1303. https://doi.org/10.1194/jlr.M024463

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  88. Ding J, Loizides-Mangold U, Rando G, Zoete V, Michielin O, Reddy JK, Wahli W, Riezman H, Thorens B (2013) The peroxisomal enzyme L-PBE is required to prevent the dietary toxicity of medium-chain fatty acids. Cell Rep 5(1):248ā€“258. https://doi.org/10.1016/j.celrep.2013.08.032

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  89. Ferdinandusse S, Denis S, Overmars H, Van Eeckhoudt L, Van Veldhoven PP, Duran M, Wanders RJ, Baes M (2005) Developmental changes of bile acid composition and conjugation in L- and D-bifunctional protein single and double knockout mice. J Biol Chem 280(19):18658ā€“18666. https://doi.org/10.1074/jbc.M414311200

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  90. Autio KJ, Schmitz W, Nair RR, Selkala EM, Sormunen RT, Miinalainen IJ, Crick PJ, Wang Y, Griffiths WJ, Reddy JK, Baes M, Hiltunen JK (2014) Role of AMACR (alpha-methylacyl-CoA racemase) and MFE-1 (peroxisomal multifunctional enzyme-1) in bile acid synthesis in mice. Biochem J 461(1):125ā€“135. https://doi.org/10.1042/BJ20130915

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  91. Nguyen SD, Baes M, Van Veldhoven PP (2008) Degradation of very long chain dicarboxylic polyunsaturated fatty acids in mouse hepatocytes, a peroxisomal process. Biochim Biophys Acta 1781(8):400ā€“405. https://doi.org/10.1016/j.bbalip.2008.06.004

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  92. Ranea-Robles P, Violante S, Argmann C, Dodatko T, Bhattacharya D, Chen H, Yu C, Friedman SL, Puchowicz M, Houten SM (2021) Murine deficiency of peroxisomal L-bifunctional protein (EHHADH) causes medium-chain 3-hydroxydicarboxylic aciduria and perturbs hepatic cholesterol homeostasis. Cell Mol Life Sci 78(14):5631ā€“5646. https://doi.org/10.1007/s00018-021-03869-9

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  93. Ranea-Robles P, Portman K, Bender A, Lee K, He JC, Mulholland DJ, Argmann C, Houten SM (2021) Peroxisomal L-bifunctional protein (EHHADH) deficiency causes male-specific kidney hypertrophy and proximal tubular injury in mice. Kidney360 2(9):1441ā€“1454. https://doi.org/10.34067/KID.0003772021

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  94. Baes M, Huyghe S, Carmeliet P, Declercq PE, Collen D, Mannaerts GP, Van Veldhoven PP (2000) Inactivation of the peroxisomal multifunctional protein-2 in mice impedes the degradation of not only 2-methyl-branched fatty acids and bile acid intermediates but also of very long chain fatty acids. J Biol Chem 275(21):16329ā€“16336. https://doi.org/10.1074/jbc.M001994200

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  95. Huyghe S, Schmalbruch H, Hulshagen L, Veldhoven PV, Baes M, Hartmann D (2006) Peroxisomal multifunctional protein-2 deficiency causes motor deficits and glial lesions in the adult central nervous system. Am J Pathol 168(4):1321ā€“1334. https://doi.org/10.2353/ajpath.2006.041220

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  96. Verheijden S, Beckers L, Casazza A, Butovsky O, Mazzone M, Baes M (2015) Identification of a chronic non-neurodegenerative microglia activation state in a mouse model of peroxisomal beta-oxidation deficiency. Glia 63(9):1606ā€“1620. https://doi.org/10.1002/glia.22831

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  97. Huyghe S, Schmalbruch H, De Gendt K, Verhoeven G, Guillou F, Van Veldhoven PP, Baes M (2006) Peroxisomal multifunctional protein 2 is essential for lipid homeostasis in Sertoli cells and male fertility in mice. Endocrinology 147(5):2228ā€“2236. https://doi.org/10.1210/en.2005-1571

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  98. Geric I, Tyurina YY, Krysko O, Krysko DV, De Schryver E, Kagan VE, Van Veldhoven PP, Baes M, Verheijden S (2018) Lipid homeostasis and inflammatory activation are disturbed in classically activated macrophages with peroxisomal beta-oxidation deficiency. Immunology 153(3):342ā€“356. https://doi.org/10.1111/imm.12844

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  99. Das Y, Swinkels D, Kocherlakota S, Vinckier S, Vaz FM, Wever E, van Kampen AHC, Jun B, Do KV, Moons L, Bazan NG, Van Veldhoven PP, Baes M (2021) Peroxisomal multifunctional protein 2 deficiency perturbs lipid homeostasis in the retina and causes visual dysfunction in mice. Front Cell Dev Biol 9:632930. https://doi.org/10.3389/fcell.2021.632930

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  100. Baes M, Gressens P, Huyghe S, De NK, Qi C, Jia Y, Mannaerts GP, Evrard P, Van VP, Declercq PE, Reddy JK (2002) The neuronal migration defect in mice with Zellweger syndrome (Pex5 knockout) is not caused by the inactivity of peroxisomal beta-oxidation. J Neuropathol Exp Neurol 61(4):368ā€“374. https://doi.org/10.1093/jnen/61.4.368

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  101. Jia Y, Qi C, Zhang Z, Hashimoto T, Rao MS, Huyghe S, Suzuki Y, Van Veldhoven PP, Baes M, Reddy JK (2003) Overexpression of peroxisome proliferator-activated receptor-alpha (PPARalpha)-regulated genes in liver in the absence of peroxisome proliferation in mice deficient in both L- and D-forms of enoyl-CoA hydratase/dehydrogenase enzymes of peroxisomal beta-oxidation system. J Biol Chem 278(47):47232ā€“47239. https://doi.org/10.1074/jbc.M306363200

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  102. Arnauld S, Fidaleo M, Clemencet MC, Chevillard G, Athias A, Gresti J, Wanders RJ, Latruffe N, Nicolas-Frances V, Mandard S (2009) Modulation of the hepatic fatty acid pool in peroxisomal 3-ketoacyl-CoA thiolase B-null mice exposed to the selective PPARalpha agonist Wy14,643. Biochimie 91(11-12):1376ā€“1386. https://doi.org/10.1016/j.biochi.2009.09.004

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  103. Nicolas-Frances V, Arnauld S, Kaminski J, Ver Loren van Themaat E, Clemencet MC, Chamouton J, Athias A, Grober J, Gresti J, Degrace P, Lagrost L, Latruffe N, Mandard S (2014) Disturbances in cholesterol, bile acid and glucose metabolism in peroxisomal 3-ketoacylCoA thiolase B deficient mice fed diets containing high or low fat contents. Biochimie 98:86ā€“101. https://doi.org/10.1016/j.biochi.2013.11.014

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  104. Fidaleo M, Arnauld S, Clemencet MC, Chevillard G, Royer MC, De Bruycker M, Wanders RJ, Athias A, Gresti J, Clouet P, Degrace P, Kersten S, Espeel M, Latruffe N, Nicolas-Frances V, Mandard S (2011) A role for the peroxisomal 3-ketoacyl-CoA thiolase B enzyme in the control of PPARalpha-mediated upregulation of SREBP-2 target genes in the liver. Biochimie 93(5):876ā€“891. https://doi.org/10.1016/j.biochi.2011.02.001

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  105. Seedorf U, Raabe M, Ellinghaus P, Kannenberg F, Fobker M, Engel T, Denis S, Wouters F, Wirtz KW, Wanders RJ, Maeda N, Assmann G (1998) Defective peroxisomal catabolism of branched fatty acyl coenzyme A in mice lacking the sterol carrier protein-2/sterol carrier protein-x gene function. Genes Dev 12(8):1189ā€“1201. https://doi.org/10.1101/gad.12.8.1189

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  106. Kannenberg F, Ellinghaus P, Assmann G, Seedorf U (1999) Aberrant oxidation of the cholesterol side chain in bile acid synthesis of sterol carrier protein-2/sterol carrier protein-x knockout mice. J Biol Chem 274(50):35455ā€“35460. https://doi.org/10.1074/jbc.274.50.35455

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  107. Monnig G, Wiekowski J, Kirchhof P, Stypmann J, Plenz G, Fabritz L, Bruns HJ, Eckardt L, Assmann G, Haverkamp W, Breithardt G, Seedorf U (2004) Phytanic acid accumulation is associated with conduction delay and sudden cardiac death in sterol carrier protein-2/sterol carrier protein-x deficient mice. J Cardiovasc Electrophysiol 15(11):1310ā€“1316. https://doi.org/10.1046/j.1540-8167.2004.03679.x

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  108. Atshaves BP, McIntosh AL, Payne HR, Gallegos AM, Landrock K, Maeda N, Kier AB, Schroeder F (2007) SCP-2/SCP-x gene ablation alters lipid raft domains in primary cultured mouse hepatocytes. J Lipid Res 48(10):2193ā€“2211. https://doi.org/10.1194/jlr.M700102-JLR200

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  109. Atshaves BP, McIntosh AL, Landrock D, Payne HR, Mackie JT, Maeda N, Ball J, Schroeder F, Kier AB (2007) Effect of SCP-x gene ablation on branched-chain fatty acid metabolism. Am J Physiol Gastrointest Liver Physiol 292(3):G939ā€“G951. https://doi.org/10.1152/ajpgi.00308.2006

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  110. Savolainen K, Kotti TJ, Schmitz W, Savolainen TI, Sormunen RT, Ilves M, Vainio SJ, Conzelmann E, Hiltunen JK (2004) A mouse model for alpha-methylacyl-CoA racemase deficiency: adjustment of bile acid synthesis and intolerance to dietary methyl-branched lipids. Hum Mol Genet 13(9):955ā€“965. https://doi.org/10.1093/hmg/ddh107

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  111. Selkala EM, Kuusisto SM, Salonurmi T, Savolainen MJ, Jauhiainen M, Pirila PL, Kvist AP, Conzelmann E, Schmitz W, Alexson SE, Kotti TJ, Hiltunen JK, Autio KJ (2013) Metabolic adaptation allows Amacr-deficient mice to remain symptom-free despite low levels of mature bile acids. Biochim Biophys Acta 1831(8):1335ā€“1343. https://doi.org/10.1016/j.bbalip.2013.05.002

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  112. Selkala EM, Nair RR, Schmitz W, Kvist AP, Baes M, Hiltunen JK, Autio KJ (2015) Phytol is lethal for Amacr-deficient mice. Biochim Biophys Acta 1851(10):1394ā€“1405. https://doi.org/10.1016/j.bbalip.2015.07.008

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  113. Darwisch W, von Spangenberg M, Lehmann J, Singin O, Deubert G, Kuhl S, Roos J, Horstmann H, Korber C, Hoppe S, Zheng H, Kuner T, Pras-Raves ML, van Kampen AHC, Waterham HR, Schwarz KV, Okun JG, Schultz C, Vaz FM, Islinger M (2020) Cerebellar and hepatic alterations in ACBD5-deficient mice are associated with unexpected, distinct alterations in cellular lipid homeostasis. Commun Biol 3(1):713. https://doi.org/10.1038/s42003-020-01442-x

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  114. Vluggens A, Andreoletti P, Viswakarma N, Jia Y, Matsumoto K, Kulik W, Khan M, Huang J, Guo D, Yu S, Sarkar J, Singh I, Rao MS, Wanders RJ, Reddy JK, Cherkaoui-Malki M (2010) Reversal of mouse Acyl-CoA oxidase 1 (ACOX1) null phenotype by human ACOX1b isoform [corrected]. Lab Investig 90(5):696ā€“708. https://doi.org/10.1038/labinvest.2010.46

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  115. Infante JP, Tschanz CL, Shaw N, Michaud AL, Lawrence P, Brenna JT (2002) Straight-chain acyl-CoA oxidase knockout mouse accumulates extremely long chain fatty acids from alpha-linolenic acid: evidence for runaway carousel-type enzyme kinetics in peroxisomal beta-oxidation diseases. Mol Genet Metab 75(2):108ā€“119. https://doi.org/10.1006/mgme.2001.3279

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  116. Huang J, Jia Y, Fu T, Viswakarma N, Bai L, Rao MS, Zhu Y, Borensztajn J, Reddy JK (2012) Sustained activation of PPARalpha by endogenous ligands increases hepatic fatty acid oxidation and prevents obesity in ob/ob mice. FASEB J 26(2):628ā€“638. https://doi.org/10.1096/fj.11-194019

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  117. Vilarinho S, Sari S, Mazzacuva F, Bilguvar K, Esendagli-Yilmaz G, Jain D, Akyol G, Dalgic B, Gunel M, Clayton PT, Lifton RP (2016) ACOX2 deficiency: a disorder of bile acid synthesis with transaminase elevation, liver fibrosis, ataxia, and cognitive impairment. Proc Natl Acad Sci U S A 113(40):11289ā€“11293. https://doi.org/10.1073/pnas.1613228113

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  118. Monte MJ, Alonso-Pena M, Briz O, Herraez E, Berasain C, Argemi J, Prieto J, Marin JJG (2017) ACOX2 deficiency: an inborn error of bile acid synthesis identified in an adolescent with persistent hypertransaminasemia. J Hepatol 66(3):581ā€“588. https://doi.org/10.1016/j.jhep.2016.11.005

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  119. de Bruin N, Ferreiros N, Schmidt M, Hofmann M, Angioni C, Geisslinger G, Parnham MJ (2018) Mutual inversion of flurbiprofen enantiomers in various rat and mouse strains. Chirality 30(5):632ā€“641. https://doi.org/10.1002/chir.22826

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  120. Tafferner N, Barthelmes J, Eberle M, Ulshofer T, Henke M, deBruin N, Mayer CA, Foerch C, Geisslinger G, Parnham MJ, Schiffmann S (2016) Alpha-methylacyl-CoA racemase deletion has mutually counteracting effects on T-cell responses, associated with unchanged course of EAE. Eur J Immunol 46(3):570ā€“581. https://doi.org/10.1002/eji.201545782

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  121. Alrehaili BD, Lee M, Takahashi S, Gonzalez FJ, Lee Y-K (2020) Mice with bile acid-CoA: amino acid N-acyltransferase deletion are protected from obesity. FASEB J 34(S1)

    Google ScholarĀ 

  122. Landowski M, Bhute VJ, Takimoto T, Grindel S, Shahi PK, Pattnaik BR, Ikeda S, Ikeda A (2022) A mutation in transmembrane protein 135 impairs lipid metabolism in mouse eyecups. Sci Rep 12(1):756. https://doi.org/10.1038/s41598-021-04644-3

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  123. Ho YS, Xiong Y, Ma W, Spector A, Ho DS (2004) Mice lacking catalase develop normally but show differential sensitivity to oxidant tissue injury. J Biol Chem 279(31):32804ā€“32812. https://doi.org/10.1074/jbc.M404800200

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  124. Vreken P, van Lint AE, Bootsma AH, Overmars H, Wanders RJ, van Gennip AH (1998) Rapid stable isotope dilution analysis of very-long-chain fatty acids, pristanic acid and phytanic acid using gas chromatography-electron impact mass spectrometry. J Chromatogr B Biomed Sci Appl 713(2):281ā€“287. https://doi.org/10.1016/s0378-4347(98)00186-8

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  125. Das Y, Roose N, De Groef L, Fransen M, Moons L, Van Veldhoven PP, Baes M (2019) Differential distribution of peroxisomal proteins points to specific roles of peroxisomes in the murine retina. Mol Cell Biochem 456(1-2):53ā€“62. https://doi.org/10.1007/s11010-018-3489-3

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  126. Dirkx R, Meyhi E, Asselberghs S, Reddy J, Baes M, Van Veldhoven PP (2007) Beta-oxidation in hepatocyte cultures from mice with peroxisomal gene knockouts. Biochem Biophys Res Commun 357(3):718ā€“723. https://doi.org/10.1016/j.bbrc.2007.03.198

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  127. van de Beek MC, Dijkstra IM, Kemp S (2017) Method for measurement of peroxisomal very long-chain fatty acid beta-oxidation and De Novo C26:0 synthesis activity in living cells using stable-isotope labeled docosanoic acid. Methods Mol Biol 1595:45ā€“54. https://doi.org/10.1007/978-1-4939-6937-1_5

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  128. Sandlers Y, Moser AB, Hubbard WC, Kratz LE, Jones RO, Raymond GV (2012) Combined extraction of acyl carnitines and 26:0 lysophosphatidylcholine from dried blood spots: prospective newborn screening for X-linked adrenoleukodystrophy. Mol Genet Metab 105(3):416ā€“420. https://doi.org/10.1016/j.ymgme.2011.11.195

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  129. van de Beek MC, Dijkstra IM, van Lenthe H, Ofman R, Goldhaber-Pasillas D, Schauer N, Schackmann M, Engelen-Lee JY, Vaz FM, Kulik W, Wanders RJ, Engelen M, Kemp S (2016) C26:0-carnitine is a new biomarker for X-linked adrenoleukodystrophy in mice and man. PLoS One 11(4):e0154597. https://doi.org/10.1371/journal.pone.0154597

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  130. Vaz FM, McDermott JH, Alders M, Wortmann SB, Kolker S, Pras-Raves ML, Vervaart MAT, van Lenthe H, Luyf ACM, Elfrink HL, Metcalfe K, Cuvertino S, Clayton PE, Yarwood R, Lowe MP, Lovell S, Rogers RC, Deciphering Developmental Disorders S, van Kampen AHC, Ruiter JPN, Wanders RJA, Ferdinandusse S, van Weeghel M, Engelen M, Banka S (2019) Mutations in PCYT2 disrupt etherlipid biosynthesis and cause a complex hereditary spastic paraplegia. Brain 142(11):3382ā€“3397. https://doi.org/10.1093/brain/awz291

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  131. He A, Chen X, Tan M, Chen Y, Lu D, Zhang X, Dean JM, Razani B, Lodhi IJ (2020) Acetyl-CoA derived from hepatic peroxisomal beta-oxidation inhibits autophagy and promotes steatosis via mTORC1 activation. Mol Cell 79(1):30ā€“42 e34. https://doi.org/10.1016/j.molcel.2020.05.007

    ArticleĀ  CASĀ  Google ScholarĀ 

  132. Beckers L, Geric I, Stroobants S, Beel S, Van Damme P, D'Hooge R, Baes M (2019) Microglia lacking a peroxisomal beta-oxidation enzyme chronically alter their inflammatory profile without evoking neuronal and behavioral deficits. J Neuroinflammation 16(1):61. https://doi.org/10.1186/s12974-019-1442-3

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  133. De Munter S, Bamps D, Malheiro AR, Kumar Baboota R, Brites P, Baes M (2018) Autonomous Purkinje cell axonal dystrophy causes ataxia in peroxisomal multifunctional protein-2 deficiency. Brain Pathol 28(5):631ā€“643. https://doi.org/10.1111/bpa.12586

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  134. Rodemer C, Thai TP, Brugger B, Kaercher T, Werner H, Nave KA, Wieland F, Gorgas K, Just WW (2003) Inactivation of ether lipid biosynthesis causes male infertility, defects in eye development and optic nerve hypoplasia in mice. Hum Mol Genet 12(15):1881ā€“1895. https://doi.org/10.1093/hmg/ddg191

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  135. Teigler A, Komljenovic D, Draguhn A, Gorgas K, Just WW (2009) Defects in myelination, paranode organization and Purkinje cell innervation in the ether lipid-deficient mouse cerebellum. Hum Mol Genet 18(11):1897ā€“1908. https://doi.org/10.1093/hmg/ddp110

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  136. Komljenovic D, Sandhoff R, Teigler A, Heid H, Just WW, Gorgas K (2009) Disruption of blood-testis barrier dynamics in ether-lipid-deficient mice. Cell Tissue Res 337(2):281ā€“299. https://doi.org/10.1007/s00441-009-0809-7

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  137. Facciotti F, Ramanjaneyulu GS, Lepore M, Sansano S, Cavallari M, Kistowska M, Forss-Petter S, Ni G, Colone A, Singhal A, Berger J, Xia C, Mori L, De Libero G (2012) Peroxisome-derived lipids are self antigens that stimulate invariant natural killer T cells in the thymus. Nat Immunol 13(5):474ā€“480. https://doi.org/10.1038/ni.2245

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  138. Brodde A, Teigler A, Brugger B, Lehmann WD, Wieland F, Berger J, Just WW (2012) Impaired neurotransmission in ether lipid-deficient nerve terminals. Hum Mol Genet 21(12):2713ā€“2724. https://doi.org/10.1093/hmg/dds097

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  139. Chang B, Hawes NL, Hurd RE, Wang J, Howell D, Davisson MT, Roderick TH, Nusinowitz S, Heckenlively JR (2005) Mouse models of ocular diseases. Vis Neurosci 22(5):587ā€“593. https://doi.org/10.1017/S0952523805225075

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  140. Liegel R, Chang B, Dubielzig R, Sidjanin DJ (2011) Blind sterile 2 (bs2), a hypomorphic mutation in Agps, results in cataracts and male sterility in mice. Mol Genet Metab 103(1):51ā€“59. https://doi.org/10.1016/j.ymgme.2011.02.002

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  141. Liegel RP, Ronchetti A, Sidjanin DJ (2014) Alkylglycerone phosphate synthase (AGPS) deficient mice: models for rhizomelic chondrodysplasia punctate type 3 (RCDP3) malformation syndrome. Mol Genet Metab Rep 1:299ā€“311. https://doi.org/10.1016/j.ymgmr.2014.06.003

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  142. Lodhi IJ, Wei X, Yin L, Feng C, Adak S, Abou-Ezzi G, Hsu FF, Link DC, Semenkovich CF (2015) Peroxisomal lipid synthesis regulates inflammation by sustaining neutrophil membrane phospholipid composition and viability. Cell Metab 21(1):51ā€“64. https://doi.org/10.1016/j.cmet.2014.12.002

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  143. Werner ER, Keller MA, Sailer S, Lackner K, Koch J, Hermann M, Coassin S, Golderer G, Werner-Felmayer G, Zoeller RA, Hulo N, Berger J, Watschinger K (2020) The TMEM189 gene encodes plasmanylethanolamine desaturase which introduces the characteristic vinyl ether double bond into plasmalogens. Proc Natl Acad Sci U S A 117(14):7792ā€“7798. https://doi.org/10.1073/pnas.1917461117

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  144. Honsho M, Tanaka M, Zoeller RA, Fujiki Y (2020) Distinct functions of acyl/alkyl dihydroxyacetonephosphate reductase in peroxisomes and endoplasmic reticulum. Front Cell Dev Biol 8:855. https://doi.org/10.3389/fcell.2020.00855

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  145. White JK, Gerdin AK, Karp NA, Ryder E, Buljan M, Bussell JN, Salisbury J, Clare S, Ingham NJ, Podrini C, Houghton R, Estabel J, Bottomley JR, Melvin DG, Sunter D, Adams NC, Sanger Institute Mouse Genetics P, Tannahill D, Logan DW, Macarthur DG, Flint J, Mahajan VB, Tsang SH, Smyth I, Watt FM, Skarnes WC, Dougan G, Adams DJ, Ramirez-Solis R, Bradley A, Steel KP (2013) Genome-wide generation and systematic phenotyping of knockout mice reveals new roles for many genes. Cell 154(2):452ā€“464. https://doi.org/10.1016/j.cell.2013.06.022

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  146. Forss-Petter S, Werner H, Berger J, Lassmann H, Molzer B, Schwab MH, Bernheimer H, Zimmermann F, Nave KA (1997) Targeted inactivation of the X-linked adrenoleukodystrophy gene in mice. J Neurosci Res 50(5):829ā€“843. https://doi.org/10.1002/(SICI)1097-4547(19971201)50:5<829::AID-JNR19>3.0.CO;2-W

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  147. Lu JF, Lawler AM, Watkins PA, Powers JM, Moser AB, Moser HW, Smith KD (1997) A mouse model for X-linked adrenoleukodystrophy. Proc Natl Acad Sci U S A 94(17):9366ā€“9371. https://doi.org/10.1073/pnas.94.17.9366

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  148. Kobayashi T, Shinnoh N, Kondo A, Yamada T (1997) Adrenoleukodystrophy protein-deficient mice represent abnormality of very long chain fatty acid metabolism. Biochem Biophys Res Commun 232(3):631ā€“636. https://doi.org/10.1006/bbrc.1997.6340

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  149. Pujol A, Ferrer I, Camps C, Metzger E, Hindelang C, Callizot N, Ruiz M, Pampols T, Giros M, Mandel JL (2004) Functional overlap between ABCD1 (ALD) and ABCD2 (ALDR) transporters: a therapeutic target for X-adrenoleukodystrophy. Hum Mol Genet 13(23):2997ā€“3006. https://doi.org/10.1093/hmg/ddh323

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  150. Fourcade S, Lopez-Erauskin J, Galino J, Duval C, Naudi A, Jove M, Kemp S, Villarroya F, Ferrer I, Pamplona R, Portero-Otin M, Pujol A (2008) Early oxidative damage underlying neurodegeneration in X-adrenoleukodystrophy. Hum Mol Genet 17(12):1762ā€“1773. https://doi.org/10.1093/hmg/ddn085

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  151. Lopez-Erauskin J, Fourcade S, Galino J, Ruiz M, Schluter A, Naudi A, Jove M, Portero-Otin M, Pamplona R, Ferrer I, Pujol A (2011) Antioxidants halt axonal degeneration in a mouse model of X-adrenoleukodystrophy. Ann Neurol 70(1):84ā€“92. https://doi.org/10.1002/ana.22363

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  152. Galino J, Ruiz M, Fourcade S, Schluter A, Lopez-Erauskin J, Guilera C, Jove M, Naudi A, Garcia-Arumi E, Andreu AL, Starkov AA, Pamplona R, Ferrer I, Portero-Otin M, Pujol A (2011) Oxidative damage compromises energy metabolism in the axonal degeneration mouse model of X-adrenoleukodystrophy. Antioxid Redox Signal 15(8):2095ā€“2107. https://doi.org/10.1089/ars.2010.3877

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  153. Lopez-Erauskin J, Galino J, Ruiz M, Cuezva JM, Fabregat I, Cacabelos D, Boada J, Martinez J, Ferrer I, Pamplona R, Villarroya F, Portero-Otin M, Fourcade S, Pujol A (2013) Impaired mitochondrial oxidative phosphorylation in the peroxisomal disease X-linked adrenoleukodystrophy. Hum Mol Genet 22(16):3296ā€“3305. https://doi.org/10.1093/hmg/ddt186

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  154. Morato L, Ruiz M, Boada J, Calingasan NY, Galino J, Guilera C, Jove M, Naudi A, Ferrer I, Pamplona R, Serrano M, Portero-Otin M, Beal MF, Fourcade S, Pujol A (2015) Activation of sirtuin 1 as therapy for the peroxisomal disease adrenoleukodystrophy. Cell Death Differ 22(11):1742ā€“1753. https://doi.org/10.1038/cdd.2015.20

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  155. Launay N, Ruiz M, Grau L, Ortega FJ, Ilieva EV, Martinez JJ, Galea E, Ferrer I, Knecht E, Pujol A, Fourcade S (2017) Tauroursodeoxycholic bile acid arrests axonal degeneration by inhibiting the unfolded protein response in X-linked adrenoleukodystrophy. Acta Neuropathol 133(2):283ā€“301. https://doi.org/10.1007/s00401-016-1655-9

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  156. Ranea-Robles P, Launay N, Ruiz M, Calingasan NY, Dumont M, Naudi A, Portero-Otin M, Pamplona R, Ferrer I, Beal MF, Fourcade S, Pujol A (2018) Aberrant regulation of the GSK-3beta/NRF2 axis unveils a novel therapy for adrenoleukodystrophy. EMBO Mol Med 10(8). https://doi.org/10.15252/emmm.201708604

  157. Ranea-Robles P, Galino J, Espinosa L, Schluter A, Ruiz M, Calingasan NY, Villarroya F, Naudi A, Pamplona R, Ferrer I, Beal MF, Portero-Otin M, Fourcade S, Pujol A (2022) Modulation of mitochondrial and inflammatory homeostasis through RIP140 is neuroprotective in an adrenoleukodystrophy mouse model. Neuropathol Appl Neurobiol 48(1):e12747. https://doi.org/10.1111/nan.12747

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  158. Ferrer I, Kapfhammer JP, Hindelang C, Kemp S, Troffer-Charlier N, Broccoli V, Callyzot N, Mooyer P, Selhorst J, Vreken P, Wanders RJ, Mandel JL, Pujol A (2005) Inactivation of the peroxisomal ABCD2 transporter in the mouse leads to late-onset ataxia involving mitochondria, Golgi and endoplasmic reticulum damage. Hum Mol Genet 14(23):3565ā€“3577. https://doi.org/10.1093/hmg/ddi384

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  159. Lu JF, Barron-Casella E, Deering R, Heinzer AK, Moser AB, deMesy Bentley KL, Wand GS, McGuinness CM, Pei Z, Watkins PA, Pujol A, Smith KD, Powers JM (2007) The role of peroxisomal ABC transporters in the mouse adrenal gland: the loss of Abcd2 (ALDR), Not Abcd1 (ALD), causes oxidative damage. Lab Investig 87(3):261ā€“272. https://doi.org/10.1038/labinvest.3700512

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  160. Fourcade S, Ruiz M, Camps C, Schluter A, Houten SM, Mooyer PA, Pampols T, Dacremont G, Wanders RJ, Giros M, Pujol A (2009) A key role for the peroxisomal ABCD2 transporter in fatty acid homeostasis. Am J Physiol Endocrinol Metab 296(1):E211ā€“E221. https://doi.org/10.1152/ajpendo.90736.2008

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  161. Liu J, Liang S, Liu X, Brown JA, Newman KE, Sunkara M, Morris AJ, Bhatnagar S, Li X, Pujol A, Graf GA (2012) The absence of ABCD2 sensitizes mice to disruptions in lipid metabolism by dietary erucic acid. J Lipid Res 53(6):1071ā€“1079. https://doi.org/10.1194/jlr.M022160

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  162. Ferdinandusse S, Jimenez-Sanchez G, Koster J, Denis S, Van Roermund CW, Silva-Zolezzi I, Moser AB, Visser WF, Gulluoglu M, Durmaz O, Demirkol M, Waterham HR, Gokcay G, Wanders RJ, Valle D (2015) A novel bile acid biosynthesis defect due to a deficiency of peroxisomal ABCD3. Hum Mol Genet 24(2):361ā€“370. https://doi.org/10.1093/hmg/ddu448

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  163. Vapola MH, Rokka A, Sormunen RT, Alhonen L, Schmitz W, Conzelmann E, Warri A, Grunau S, Antonenkov VD, Hiltunen JK (2014) Peroxisomal membrane channel Pxmp2 in the mammary fat pad is essential for stromal lipid homeostasis and for development of mammary gland epithelium in mice. Dev Biol 391(1):66ā€“80. https://doi.org/10.1016/j.ydbio.2014.03.022

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  164. Van Veldhoven PP, de Schryver E, Young SG, Zwijsen A, Fransen M, Espeel M, Baes M, Van Ael E (2020) Slc25a17 gene trapped mice: PMP34 plays a role in the peroxisomal degradation of phytanic and pristanic acid. Front Cell Dev Biol 8:144. https://doi.org/10.3389/fcell.2020.00144

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  165. Blankestijn M, Bloks VW, Struik D, Huijkman N, Kloosterhuis N, Wolters JC, Wanders RJA, Vaz FM, Islinger M, Kuipers F, van de Sluis B, Groen AK, Verkade HJ, Jonker JW (2022) Mice with a deficiency in Peroxisomal Membrane Protein 4 (PXMP4) display mild changes in hepatic lipid metabolism. Sci Rep 12(1):2512. https://doi.org/10.1038/s41598-022-06479-y

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  166. Lee WH, Higuchi H, Ikeda S, Macke EL, Takimoto T, Pattnaik BR, Liu C, Chu LF, Siepka SM, Krentz KJ, Rubinstein CD, Kalejta RF, Thomson JA, Mullins RF, Takahashi JS, Pinto LH, Ikeda A (2016) Mouse Tmem135 mutation reveals a mechanism involving mitochondrial dynamics that leads to age-dependent retinal pathologies. elife 5. https://doi.org/10.7554/eLife.19264

  167. Montoro R, Heine VM, Kemp S, Engelen M (2021) Evolution of adrenoleukodystrophy model systems. J Inherit Metab Dis 44(3):544ā€“553. https://doi.org/10.1002/jimd.12357

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  168. Jaspers YRJ, Ferdinandusse S, Dijkstra IME, Barendsen RW, van Lenthe H, Kulik W, Engelen M, Goorden SMI, Vaz FM, Kemp S (2020) Comparison of the diagnostic performance of C26:0-lysophosphatidylcholine and very long-chain fatty acids analysis for peroxisomal disorders. Front Cell Dev Biol 8:690. https://doi.org/10.3389/fcell.2020.00690

    ArticleĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  169. Zarsky V, Dolezal P (2016) Evolution of the Tim17 protein family. Biol Direct 11(1):54. https://doi.org/10.1186/s13062-016-0157-y

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  170. Dutta RK, Maharjan Y, Lee JN, Park C, Ho YS, Park R (2021) Catalase deficiency induces reactive oxygen species mediated pexophagy and cell death in the liver during prolonged fasting. Biofactors 47(1):112ā€“125. https://doi.org/10.1002/biof.1708

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  171. Piao L, Choi J, Kwon G, Ha H (2017) Endogenous catalase delays high-fat diet-induced liver injury in mice. Korean J Physiol Pharmacol 21(3):317ā€“325. https://doi.org/10.4196/kjpp.2017.21.3.317

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  172. Hwang I, Lee J, Huh JY, Park J, Lee HB, Ho YS, Ha H (2012) Catalase deficiency accelerates diabetic renal injury through peroxisomal dysfunction. Diabetes 61(3):728ā€“738. https://doi.org/10.2337/db11-0584

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  173. Mizuno Y, Ninomiya Y, Nakachi Y, Iseki M, Iwasa H, Akita M, Tsukui T, Shimozawa N, Ito C, Toshimori K, Nishimukai M, Hara H, Maeba R, Okazaki T, Alodaib AN, Al Amoudi M, Jacob M, Alkuraya FS, Horai Y, Watanabe M, Motegi H, Wakana S, Noda T, Kurochkin IV, Mizuno Y, Schonbach C, Okazaki Y (2013) Tysnd1 deficiency in mice interferes with the peroxisomal localization of PTS2 enzymes, causing lipid metabolic abnormalities and male infertility. PLoS Genet 9(2):e1003286. https://doi.org/10.1371/journal.pgen.1003286

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  174. Salido EC, Li XM, Lu Y, Wang X, Santana A, Roy-Chowdhury N, Torres A, Shapiro LJ, Roy-Chowdhury J (2006) Alanine-glyoxylate aminotransferase-deficient mice, a model for primary hyperoxaluria that responds to adenoviral gene transfer. Proc Natl Acad Sci U S A 103(48):18249ā€“18254. https://doi.org/10.1073/pnas.0607218103

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  175. Wu X, Wakamiya M, Vaishnav S, Geske R, Montgomery C Jr, Jones P, Bradley A, Caskey CT (1994) Hyperuricemia and urate nephropathy in urate oxidase-deficient mice. Proc Natl Acad Sci U S A 91(2):742ā€“746. https://doi.org/10.1073/pnas.91.2.742

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  176. Lu J, Hou X, Yuan X, Cui L, Liu Z, Li X, Ma L, Cheng X, Xin Y, Wang C, Zhang K, Wang X, Ren W, Sun R, Jia Z, Tian Z, Mi QS, Li C (2018) Knockout of the urate oxidase gene provides a stable mouse model of hyperuricemia associated with metabolic disorders. Kidney Int 93(1):69ā€“80. https://doi.org/10.1016/j.kint.2017.04.031

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  177. Konno R, Yasumura Y (1983) Mouse mutant deficient in D-amino acid oxidase activity. Genetics 103(2):277ā€“285. https://doi.org/10.1093/genetics/103.2.277

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  178. Konno R, Hamase K, Maruyama R, Zaitsu K (2010) Mutant mice and rats lacking D-amino acid oxidase. Chem Biodivers 7(6):1450ā€“1458. https://doi.org/10.1002/cbdv.200900303

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  179. Errico F, Pirro MT, Affuso A, Spinelli P, De Felice M, D'Aniello A, Di Lauro R (2006) A physiological mechanism to regulate D-aspartic acid and NMDA levels in mammals revealed by D-aspartate oxidase deficient mice. Gene 374:50ā€“57. https://doi.org/10.1016/j.gene.2006.01.010

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  180. de Bartolomeis A, Errico F, Aceto G, Tomasetti C, Usiello A, Iasevoli F (2015) D-aspartate dysregulation in Ddo(āˆ’/āˆ’) mice modulates phencyclidine-induced gene expression changes of postsynaptic density molecules in cortex and striatum. Prog Neuro-Psychopharmacol Biol Psychiatry 62:35ā€“43. https://doi.org/10.1016/j.pnpbp.2015.05.003

    ArticleĀ  CASĀ  Google ScholarĀ 

  181. Murtas G, Caldinelli L, Cappelletti P, Sacchi S, Pollegioni L (2018) Human d-amino acid oxidase: the inactive G183R variant. Biochim Biophys Acta Proteins Proteomics 1866(7):822ā€“830. https://doi.org/10.1016/j.bbapap.2017.12.007

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Acknowledgments

This research was funded by grants from the KU Leuven (C14/18/088) and from the Research Foundationā€“Flanders (FWO G0A8619N).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Myriam Baes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kocherlakota, S., Swinkels, D., Van Veldhoven, P.P., Baes, M. (2023). Mouse Models to Study Peroxisomal Functions and Disorders: Overview, Caveats, and Recommendations. In: Schrader, M. (eds) Peroxisomes. Methods in Molecular Biology, vol 2643. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3048-8_34

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3048-8_34

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3047-1

  • Online ISBN: 978-1-0716-3048-8

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics