Skip to main content

Deciphering Macromolecular Interactions Involved in Abiotic Stress Signaling: A Review of Bioinformatics Analysis

  • Protocol
  • First Online:
Plant Abiotic Stress Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2642))

Abstract

Plant functioning and responses to abiotic stresses largely involve regulations at the transcriptomic level via complex interactions of signal molecules, signaling cascades, and regulators. Nevertheless, all the signaling networks involved in responses to abiotic stresses have not yet been fully established. The in-depth analysis of transcriptomes in stressed plants has become a relevant state-of-the-art methodology to study these regulations and signaling pathways that allow plants to cope with or attempt to survive abiotic stresses. The plant science and molecular biology community has developed databases about genes, proteins, protein-protein interactions, protein-DNA interactions and ontologies, which are valuable sources of knowledge for deciphering such regulatory and signaling networks. The use of these data and the development of bioinformatics tools help to make sense of transcriptomic data in specific contexts, such as that of abiotic stress signaling, using functional biological approaches. The aim of this chapter is to present and assess some of the essential online tools and resources that will allow novices in bioinformatics to decipher transcriptomic data in order to characterize the cellular processes and functions involved in abiotic stress responses and signaling. The analysis of case studies further describes how these tools can be used to conceive signaling networks on the basis of transcriptomic data. In these case studies, particular attention was paid to the characterization of abiotic stress responses and signaling related to chemical and xenobiotic stressors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Blum A (2016) Stress, strain, signaling, and adaptation--not just a matter of definition. J Exp Bot 67(3):562–565. https://doi.org/10.1093/jxb/erv497

    Article  CAS  PubMed  Google Scholar 

  2. Bailey-Serres J, Parker JE, Ainsworth EA et al (2019) Genetic strategies for improving crop yields. Nature 575(7781):109–118. https://doi.org/10.1038/s41586-019-1679-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Möhring N, Ingold K, Kudsk P et al (2020) Pathways for advancing pesticide policies. Nat Food 1:535–540. https://doi.org/10.1038/s43016-020-00141-4

    Article  Google Scholar 

  4. Urban MC (2015) Climate change. Accelerating extinction risk from climate change. Science 348(6234):571–573. https://doi.org/10.1126/science.aaa4984

    Article  CAS  PubMed  Google Scholar 

  5. Rosenzweig C, Elliott J, Deryng D et al (2014) Assessing agricultural risks of climate change in the 21st century in a global gridded crop model intercomparison. Proc Natl Acad Sci U S A 111(9):3268–3273. https://doi.org/10.1073/pnas.1222463110

    Article  CAS  PubMed  Google Scholar 

  6. Pereira A (2016) Plant abiotic stress challenges from the changing environment. Front Plant Sci 7:1123. https://doi.org/10.3389/fpls.2016.01123

    Article  PubMed  PubMed Central  Google Scholar 

  7. Zenda T, Liu S, Dong A, Li J et al (2021) Omics-facilitated crop improvement for climate resilience and superior nutritive value. Front Plant Sci 12:774994. https://doi.org/10.3389/fpls.2021.774994

    Article  PubMed  PubMed Central  Google Scholar 

  8. Singh AH, Wolf DM, Wang P et al (2008) Modularity of stress response evolution. Proc Natl Acad Sci U S A 105(21):7500–7505. https://doi.org/10.1073/pnas.0709764105

    Article  PubMed  PubMed Central  Google Scholar 

  9. Lamers J, van der Meer T, Testerink C (2020) How plants sense and respond to stressful environments. Plant Physiol 182(4):1624–1635. https://doi.org/10.1104/pp.19.01464

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Jung JH, Domijan M, Klose C et al (2016) Phytochromes function as thermosensors in Arabidopsis. Science 354(6314):886–889. https://doi.org/10.1126/science.aaf6005

    Article  CAS  PubMed  Google Scholar 

  11. Legris M, Klose C, Burgie ES et al (2016) Phytochrome B integrates light and temperature signals in Arabidopsis. Science 354:897–900. https://doi.org/10.1126/science.aaf5656

    Article  CAS  PubMed  Google Scholar 

  12. Jiang Z, Zhou X, Tao M et al (2019) Plant cell-surface GIPC sphingolipids sense salt to trigger Ca2+ influx. Nature 572(7769):341–346. https://doi.org/10.1038/s41586-019-1449-z

    Article  CAS  PubMed  Google Scholar 

  13. Rivero RM, Mittler R, Blumwald E et al (2022) Developing climate-resilient crops: improving plant tolerance to stress combination. Plant J 109(2):373–389. https://doi.org/10.1111/tpj.15483

    Article  CAS  PubMed  Google Scholar 

  14. Skalak J, Nicolas KL, Vankova R et al (2021) Signal integration in plant abiotic stress responses via multistep phosphorelay signaling. Front Plant Sci 12:644823. https://doi.org/10.3389/fpls.2021.644823

    Article  PubMed  PubMed Central  Google Scholar 

  15. Aftab T, Roychoudhury A (2021) Crosstalk among plant growth regulators and signaling molecules during biotic and abiotic stresses: molecular responses and signaling pathways. Plant Cell Rep 40(11):2017–2019. https://doi.org/10.1007/s00299-021-02791-5

    Article  CAS  PubMed  Google Scholar 

  16. Serra AA, Alberto D, Ramel F et al (2017) Perturbation and disruption of plant hormone signaling by organic xenobiotic pollution. In: Pandey GK (ed) Mechanism of plant hormone signaling under stress, 1st edn. Wiley, New York. https://doi.org/10.1002/9781118889022.ch25

  17. Sewelam N, Kazan K, Schenk PM (2016) Global plant stress signaling: reactive oxygen species at the cross-road. Front Plant Sci 7:187. https://doi.org/10.3389/fpls.2016.00187

    Article  PubMed  PubMed Central  Google Scholar 

  18. Aslam S, Gul N, Mir MA et al (2021) Role of jasmonates, calcium, and glutathione in plants to combat abiotic stresses through precise signaling cascade. Front Plant Sci 12:668029. https://doi.org/10.3389/fpls.2021.668029

    Article  PubMed  PubMed Central  Google Scholar 

  19. Serra AA, Couée I, Heijnen D et al (2015) Genome-wide transcriptional profiling and metabolic analysis uncover multiple molecular responses of the grass species Lolium perenne under low-intensity xenobiotic stress. Front Plant Sci 6:1124. https://doi.org/10.3389/fpls.2015.01124

    Article  PubMed  PubMed Central  Google Scholar 

  20. Sewelam N, Brilhaus D, Bräutigam A et al (2020) Molecular plant responses to combined abiotic stresses put a spotlight on unknown and abundant genes. J Exp Bot 71(16):5098–5112. https://doi.org/10.1093/jxb/eraa250

    Article  CAS  PubMed  Google Scholar 

  21. Krantz M, Zimmer D, Adler SO et al (2021) Data management and modeling in plant biology. Front Plant Sci 12:717958. https://doi.org/10.3389/fpls.2021.717958

    Article  PubMed  PubMed Central  Google Scholar 

  22. Provart NJ, Brady SM, Parry G et al (2021) Anno genominis XX: 20 years of Arabidopsis genomics. Plant Cell 33(4):832–845. https://doi.org/10.1093/plcell/koaa038

    Article  PubMed  Google Scholar 

  23. Depuydt T, Vandepoele K (2021) Multi-omics network-based functional annotation of unknown Arabidopsis genes. Plant J 108:1193–1212. https://doi.org/10.1111/tpj.15507

    Article  CAS  PubMed  Google Scholar 

  24. Stepanova AN (2021) Plant biology research: what is next? Front Plant Sci 12:749104. https://doi.org/10.3389/fpls.2021.749104

    Article  PubMed  PubMed Central  Google Scholar 

  25. Carianopol CS, Chan AL, Dong S et al (2020) An abscisic acid-responsive protein interaction network for sucrose non-fermenting related kinase1 in abiotic stress response. Commun Biol 3(1):145. https://doi.org/10.1038/s42003-020-0866-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Zandalinas SI, Sengupta S, Fritschi FB et al (2021) The impact of multifactorial stress combination on plant growth and survival. New Phytol 230(3):1034–1048. https://doi.org/10.1111/nph.17232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Zou C, Sun K, Mackaluso JD et al (2011) Cis-regulatory code of stress-responsive transcription in Arabidopsis thaliana. Proc Natl Acad Sci U S A 108(36):14992–14997. https://doi.org/10.1073/pnas.1103202108

    Article  PubMed  PubMed Central  Google Scholar 

  28. Meng X, Liang Z, Dai X et al (2021) Predicting transcriptional responses to cold stress across plant species. Proc Natl Acad Sci U S A 118(10):e2026330118. https://doi.org/10.1073/pnas.2026330118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Zemlyanskaya EV, Dolgikh VA, Levitsky VG et al (2021) Transcriptional regulation in plants: using omics data to crack the cis-regulatory code. Curr Opin Plant Biol 63:102058. https://doi.org/10.1016/j.pbi.2021.102058

    Article  CAS  PubMed  Google Scholar 

  30. Parry G, Provart NJ, Brady SM et al (2020) Multinational Arabidopsis Steering Committee. Current status of the multinational Arabidopsis community. Plant Direct 4(7):e00248. https://doi.org/10.1002/pld3.248

    Article  PubMed  PubMed Central  Google Scholar 

  31. Yang Y, Li Y, Wu C (2013) Genomic resources for functional analyses of the rice genome. Curr Opin Plant Biol 16(2):157–163. https://doi.org/10.1016/j.pbi.2013.03.010

    Article  CAS  PubMed  Google Scholar 

  32. Portwood JL 2nd, Woodhouse MR, Cannon EK et al (2019) MaizeGDB 2018: the maize multi-genome genetics and genomics database. Nucleic Acids Res 47(D1):D1146–D1154. https://doi.org/10.1093/nar/gky1046

    Article  PubMed  Google Scholar 

  33. Falter-Braun P, Brady S, Gutiérrez RA et al (2019) iPlant Systems Biology (iPSB): an international network hub in the plant community. Mol Plant 12(6):727–730. https://doi.org/10.1016/j.molp.2019.05.005

    Article  CAS  PubMed  Google Scholar 

  34. Conesa A, Madrigal P, Tarazona S et al (2016) A survey of best practices for RNA-seq data analysis. Genome Biol 17:13. https://doi.org/10.1186/s13059-016-0881-8

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Allison DB, Cui X, Page GP et al (2006) Microarray data analysis: from disarray to consolidation and consensus. Nat Rev Genet 7(1):55–65. https://doi.org/10.1038/nrg1749

    Article  CAS  PubMed  Google Scholar 

  36. Fernandez-Pozo N, Haas FB, Gould SB et al (2022) An overview of bioinformatics, genomics and transcriptomics resources for bryophytes. J Exp Bot 73(13):4291–4305. https://doi.org/10.1093/jxb/erac052

    Article  CAS  PubMed  Google Scholar 

  37. Alex Mason G, Cantó-Pastor A, Brady SM et al (2021) Bioinformatic tools in arabidopsis research. In: Sanchez-Serrano JJ, Salinas J (eds) Arabidopsis protocols. Methods in molecular biology. Humana, New York. https://doi.org/10.1007/978-1-0716-0880-7_2

    Chapter  Google Scholar 

  38. Almeida-Silva F, Moharana KC, Venancio TM (2021) The state of the art in soybean transcriptomics resources and gene coexpression networks. in silico Plants 3(1):diab005. https://doi.org/10.1093/insilicoplants/diab005

  39. Cantó-Pastor A, Mason GA, Brady SM et al (2021) Arabidopsis bioinformatics: tools and strategies. Plant J 108(6):1585–1596. https://doi.org/10.1111/tpj.15547

    Article  CAS  PubMed  Google Scholar 

  40. Kulkarni SR, Vandepoele K (1863) Inference of plant gene regulatory networks using data-driven methods: a practical overview. Biochim Biophys Acta Gene Regul Mech 2020(6):194447. https://doi.org/10.1016/j.bbagrm.2019.194447

    Article  CAS  Google Scholar 

  41. Reimand J, Isserlin R, Voisin V et al (2019) Pathway enrichment analysis and visualization of omics data using g:profiler, GSEA, Cytoscape and EnrichmentMap. Nat Protoc 14(2):482–517. https://doi.org/10.1038/s41596-018-0103-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Varala K, Williams M, Marshall-Colon A (2018) A bioinformatics pipeline to explore transcriptional regulation in plants. Plant Cell 30(9):tpc.118.tt0918. https://doi.org/10.1105/tpc.118.tt0918

    Article  Google Scholar 

  43. Rigden DJ, Fernández XM (2022) The 2022 Nucleic Acids Research database issue and the online molecular biology database collection. Nucleic Acids Res 50(D1):D1–D10. https://doi.org/10.1093/nar/gkab1195

    Article  CAS  PubMed  Google Scholar 

  44. IAIC, International Arabidopsis Informatics Consortium (2019) Arabidopsis bioinformatics resources: the current state, challenges, and priorities for the future. Plant Direct 3(1):e00109. https://doi.org/10.1002/pld3.109

    Article  Google Scholar 

  45. Benson DA, Cavanaugh M, Clark K et al (2013) GenBank. Nucleic Acids Res 41(Database issue):D36–D42. https://doi.org/10.1093/nar/gks1195

    Article  CAS  PubMed  Google Scholar 

  46. Brown GR, Hem V, Katz KS et al (2015) Gene: a gene-centered information resource at NCBI. Nucleic Acids Res 43(Database issue):D36–D42. https://doi.org/10.1093/nar/gku1055

    Article  CAS  PubMed  Google Scholar 

  47. Reiser L, Subramaniam S, Li D et al (2017) Using the Arabidopsis information resource (TAIR) to find information about Arabidopsis genes. Curr Protoc Bioinformatics 60:1.11.1–1.11.45. https://doi.org/10.1002/cpbi.36

    Article  PubMed  Google Scholar 

  48. Cheng CY, Krishnakumar V, Chan AP, Thibaud-Nissen F, Schobel S, Town CD (2017) Ara-port11: a complete reannotation of the Arabidopsis thaliana reference genome. Plant J 89(4):789–804. https://doi.org/10.1111/tpj.13415

  49. Pasha A, Subramaniam S, Cleary A et al (2020) Araport lives: an updated framework for Arabidopsis bioinformatics. Plant Cell 32(9):2683–2686. https://doi.org/10.1105/tpc.20.00358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Hong WJ, Kim YJ, Chandran AKN et al (2019) Infrastructures of systems biology that facilitate functional genomic study in rice. Rice (NY) 12(1):15. https://doi.org/10.1186/s12284-019-0276-z

    Article  Google Scholar 

  51. Zhang M, Liu S, Wang Z et al (2022) Progress in soybean functional genomics over the past decade. Plant Biotechnol J 20(2):256–282. https://doi.org/10.1111/pbi.13682

    Article  CAS  PubMed  Google Scholar 

  52. Tello-Ruiz MK, Jaiswal P, Ware D (2022) Gramene: a resource for comparative analysis of plants genomes and pathways. Methods Mol Biol 2443:101–131. https://doi.org/10.1007/978-1-0716-2067-0_5

    Article  PubMed  Google Scholar 

  53. Yates AD, Allen J, Amode RM et al (2022) Ensembl genomes 2022: an expanding genome resource for non-vertebrates. Nucleic Acids Res 50(D1):D996–D1003. https://doi.org/10.1093/nar/gkab1007

    Article  CAS  PubMed  Google Scholar 

  54. Van Bel M, Silvestri F, Weitz EM et al (2022) PLAZA 5.0: extending the scope and power of comparative and functional genomics in plants. Nucleic Acids Res 50(D1):D1468–D1474. https://doi.org/10.1093/nar/gkab1024

    Article  CAS  PubMed  Google Scholar 

  55. UniProt Consortium (2021) UniProt: the universal protein knowledgebase in 2021. Nucleic Acids Res 49(D1):D480–D489. https://doi.org/10.1093/nar/gkaa1100

    Article  CAS  Google Scholar 

  56. Blum M, Chang HY, Chuguransky S et al (2021) The InterPro protein families and domains database: 20 years on. Nucleic Acids Res 49(D1):D344–D354. https://doi.org/10.1093/nar/gkaa977

    Article  CAS  PubMed  Google Scholar 

  57. Mistry J, Chuguransky S, Williams L et al (2021) Pfam: the protein families database in 2021. Nucleic Acids Res 49(D1):D412–D419. https://doi.org/10.1093/nar/gkaa913

    Article  CAS  PubMed  Google Scholar 

  58. Berardini TZ, Reiser L, Li D, Mezheritsky Y et al (2015) The Arabidopsis information resource: making and mining the “gold standard” annotated reference plant genome. Genesis 53(8):474–485. https://doi.org/10.1002/dvg.22877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Bourbousse C, Vegesna N, Law JA (2018) SOG1 activator and MYB3R repressors regulate a complex DNA damage network in Arabidopsis. Proc Natl Acad Sci U S A 115(52):E12453–E12462. https://doi.org/10.1073/pnas.1810582115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sekhon RS, Briskine R, Hirsch CN et al (2013) Maize gene atlas developed by RNA sequencing and comparative evaluation of transcriptomes based on RNA sequencing and microarrays. PLoS One 8(4):e61005. https://doi.org/10.1371/journal.pone.0061005

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Filichkin SA, Hamilton M, Dharmawardhana PD et al (2018) Abiotic stresses modulate landscape of poplar transcriptome via alternative splicing, differential intron retention, and isoform ratio switching. Front Plant Sci 9:5. https://doi.org/10.3389/fpls.2018.00005

    Article  PubMed  PubMed Central  Google Scholar 

  62. Brazma A, Hingamp P, Quackenbush J et al (2001) Minimum information about a microarray experiment (MIAME)-toward standards for microarray data. Nat Genet 29(4):365–371. https://doi.org/10.1038/ng1201-365

    Article  CAS  PubMed  Google Scholar 

  63. Brazma A, Ball C, Bumgarner R et al (2012) MINSEQE: minimum information about a high-throughput Nucleotide SeQuencing Experiment – a proposal for standards in functional genomic data reporting (1.0). Zenodo. https://doi.org/10.5281/zenodo.5706412

  64. Storey JD, Tibshirani R (2003) Statistical significance for genomewide studies. Proc Natl Acad Sci U S A 100(16):9440–9445. https://doi.org/10.1073/pnas.1530509100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barrett T, Wilhite SE, Ledoux P et al (2013) NCBI GEO: archive for functional genomics data sets--update. Nucleic Acids Res 41(Database issue):D991–D995. https://doi.org/10.1093/nar/gks1193

    Article  CAS  PubMed  Google Scholar 

  66. Sarkans U, Füllgrabe A, Ali A et al (2021) From ArrayExpress to BioStudies. Nucleic Acids Res 49(D1):D1502–D1506. https://doi.org/10.1093/nar/gkaa1062

    Article  CAS  PubMed  Google Scholar 

  67. Le Roch KG, Zhou Y, Blair PL et al (2003) Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301(5639):1503–1508. https://doi.org/10.1126/science.1087025

    Article  PubMed  Google Scholar 

  68. Bardou P, Mariette J, Escudié F et al (2014) jvenn: an interactive Venn diagram viewer. BMC Bioinf 15(1):293. https://doi.org/10.1186/1471-2105-15-293

    Article  Google Scholar 

  69. Heberle H, Meirelles GV, da Silva FR et al (2015) InteractiVenn: a web-based tool for the analysis of sets through Venn diagrams. BMC Bioinf 16(1):169. https://doi.org/10.1186/s12859-015-0611-3

    Article  Google Scholar 

  70. de Hoon MJ, Imoto S, Nolan J, Miyano S (2004) Open source clustering software. Bioinformatics 20(9):1453–1454. https://doi.org/10.1093/bioinformatics/bth078

    Article  CAS  PubMed  Google Scholar 

  71. Sturn A, Quackenbush J, Trajanoski Z (2002) Genesis: cluster analysis of microarray data. Bioinformatics 18(1):207–208. https://doi.org/10.1093/bioinformatics/18.1.207

    Article  CAS  PubMed  Google Scholar 

  72. Weinstein JN, Myers TG, O'Connor PM et al (1997) An information-intensive approach to the molecular pharmacology of cancer. Science 275(5298):343–349. https://doi.org/10.1126/science.275.5298.343

    Article  CAS  PubMed  Google Scholar 

  73. Ashburner M, Ball CA, Blake JA et al (2000) Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet 25(1):25–29. https://doi.org/10.1038/75556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. García-Campos MA, Espinal-Enríquez J, Hernández-Lemus E (2015) Pathway analysis: state of the art. Front Physiol 6:383. https://doi.org/10.3389/fphys.2015.00383

    Article  PubMed  PubMed Central  Google Scholar 

  75. Schwacke R, Ponce-Soto GY, Krause K et al (2019) MapMan4: a refined protein classification and annotation framework applicable to multi-omics data analysis. Mol Plant 12(6):879–892. https://doi.org/10.1016/j.molp.2019.01.003

    Article  CAS  PubMed  Google Scholar 

  76. Kanehisa M, Goto S, Sato Y et al (2014) Data, information, knowledge and principle: back to metabolism in KEGG. Nucleic Acids Res 42(Database issue):D199–D205. https://doi.org/10.1093/nar/gkt1076

    Article  CAS  PubMed  Google Scholar 

  77. Provart NJ, Gil P, Chen W et al (2003) Gene expression phenotypes of Arabidopsis associated with sensitivity to low temperatures. Plant Physiol 132(2):893–906. https://doi.org/10.1104/pp.103.021261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Tian T, Liu Y, Yan H et al (2017) agriGO v2.0: a GO analysis toolkit for the agricultural community, 2017 update. Nucleic Acids Res 45(W1):W122–W129. https://doi.org/10.1093/nar/gkx382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yi X, Du Z, Su Z (2013) PlantGSEA: a gene set enrichment analysis toolkit for plant community. Nucleic Acids Res 41(Web Server issue):W98–W103. https://doi.org/10.1093/nar/gkt281

    Article  PubMed  PubMed Central  Google Scholar 

  80. Mi H, Ebert D, Muruganujan A et al (2021) PANTHER version 16: a revised family classification, tree-based classification tool, enhancer regions and extensive API. Nucleic Acids Res 49(D1):D394–D403. https://doi.org/10.1093/nar/gkaa1106

    Article  CAS  PubMed  Google Scholar 

  81. Raudvere U, Kolberg L, Kuzmin I et al (2019) g:Profiler: a web server for functional enrichment analysis and conversions of gene lists (2019 update). Nucleic Acids Res 47(W1):W191–W198. https://doi.org/10.1093/nar/gkz369

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Shannon P, Markiel A, Ozier O et al (2003) Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 13(11):2498–2504. https://doi.org/10.1101/gr.1239303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Maere S, Heymans K, Kuiper M (2005) BiNGO: a Cytoscape plugin to assess overrepresentation of gene ontology categories in biological networks. Bioinformatics 21(16):3448–3449. https://doi.org/10.1093/bioinformatics/bti551

    Article  CAS  PubMed  Google Scholar 

  84. Stuart JM, Segal E, Koller D et al (2003) A gene-coexpression network for global discovery of conserved genetic modules. Science 302(5643):249–255. https://doi.org/10.1126/science.1087447

    Article  CAS  PubMed  Google Scholar 

  85. Movahedi S, Van Bel M, Heyndrickx KS et al (2012) Comparative co-expression analysis in plant biology. Plant Cell Environ 35(10):1787–1798. https://doi.org/10.1111/j.1365-3040.2012.02517.x

    Article  CAS  PubMed  Google Scholar 

  86. Usadel B, Obayashi T, Mutwil M et al (2009) Co-expression tools for plant biology: opportunities for hypothesis generation and caveats. Plant Cell Environ 32(12):1633–1651. https://doi.org/10.1111/j.1365-3040.2009.02040.x

    Article  CAS  PubMed  Google Scholar 

  87. Serin EA, Nijveen H, Hilhorst HW et al (2016) Learning from co-expression networks: possibilities and challenges. Front Plant Sci 7:444. https://doi.org/10.3389/fpls.2016.00444

    Article  PubMed  PubMed Central  Google Scholar 

  88. Obayashi T, Hibara H, Kagaya Y et al (2022) ATTED-II v11: a plant gene coexpression database using a sample balancing technique by subagging of principal components. Plant Cell Physiol 63(6):869–881. https://doi.org/10.1093/pcp/pcac041

    Article  CAS  PubMed  Google Scholar 

  89. Mostafavi S, Ray D, Warde-Farley D et al (2008) GeneMANIA: a real-time multiple association network integration algorithm for predicting gene function. Genome Biol 9:S4. https://doi.org/10.1186/gb-2008-9-s1-s4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Franz M, Rodriguez H, Lopes C et al (2018) GeneMANIA update 2018. Nucleic Acids Res 46(W1):W60–W64. https://doi.org/10.1093/nar/gky311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Montojo J, Zuberi K, Rodriguez H et al (2014) GeneMANIA: fast gene network construction and function prediction for Cytoscape. F1000Res 3:153. https://doi.org/10.12688/f1000research.4572.1

    Article  PubMed  PubMed Central  Google Scholar 

  92. Austin RS, Hiu S, Waese J et al (2016) New BAR tools for mining expression data and exploring Cis-elements in Arabidopsis thaliana. Plant J 88(3):490–504. https://doi.org/10.1111/tpj.13261

    Article  CAS  PubMed  Google Scholar 

  93. Hruz T, Laule O, Szabo G et al (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinforma 2008:420747. https://doi.org/10.1155/2008/420747

    Article  Google Scholar 

  94. Yamasaki K, Kigawa T, Seki M et al (2013) DNA-binding domains of plant-specific transcription factors: structure, function, and evolution. Trends Plant Sci 18(5):267–276. https://doi.org/10.1016/j.tplants.2012.09.001

    Article  CAS  PubMed  Google Scholar 

  95. Schmitz RJ, Grotewold E, Stam M (2022) Cis-regulatory sequences in plants: their importance, discovery, and future challenges. Plant Cell 34(2):718–741. https://doi.org/10.1093/plcell/koab281

    Article  PubMed  Google Scholar 

  96. Ferraz RAC, Lopes ALG, da Silva JAF et al (2021) DNA-protein interaction studies: a historical and comparative analysis. Plant Methods 17(1):82. https://doi.org/10.1186/s13007-021-00780-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Johnson DS, Mortazavi A, Myers RM et al (2007) Genome-wide mapping of in vivo protein-DNA interactions. Science 316(5830):1497–1502. https://doi.org/10.1126/science.1141319

  98. Bartlett A, O’Malley RC, Huang SC et al (2017) Mapping genome-wide transcription-factor binding sites using DAP-seq. Nat Protoc 12(8):1659–1672. https://doi.org/10.1038/nprot.2017.055

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Thibaud-Nissen F, Wu H, Richmond T et al (2006) Development of Arabidopsis whole-genome microarrays and their application to the discovery of binding sites for the TGA2 transcription factor in salicylic acid-treated plants. Plant J 47(1):152–162. https://doi.org/10.1111/j.1365-313X.2006.02770.x

    Article  CAS  PubMed  Google Scholar 

  100. Higo K, Ugawa Y, Iwamoto M et al (1999) Plant cis-acting regulatory DNA elements (PLACE) database: 1999. Nucleic Acids Res 27(1):297–300. https://doi.org/10.1093/nar/27.1.297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Castro-Mondragon JA, Riudavets-Puig R, Rauluseviciute I et al (2022) JASPAR 2022: the 9th release of the open-access database of transcription factor binding profiles. Nucleic Acids Res 50(D1):D165–D173. https://doi.org/10.1093/nar/gkab1113

    Article  CAS  PubMed  Google Scholar 

  102. Davuluri RV, Sun H, Palaniswamy SK et al (2003) AGRIS: Arabidopsis gene regulatory information server, an information resource of Arabidopsis Cis-regulatory elements and transcription factors. BMC Bioinf 4:25. https://doi.org/10.1186/1471-2105-4-25

    Article  Google Scholar 

  103. Weirauch MT, Yang A, Albu M et al (2014) Determination and inference of eukaryotic transcription factor sequence specificity. Cell 158(6):1431–1443. https://doi.org/10.1016/j.cell.2014.08.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. O'Malley RC, Huang SC, Song L et al (2016) Cistrome and epicistrome features shape the regulatory DNA landscape. Cell 166(6):1598. https://doi.org/10.1016/j.cell.2016.08.063

    Article  CAS  PubMed  Google Scholar 

  105. Franco-Zorrilla JM, López-Vidriero I, Carrasco JL et al (2014) DNA-binding specificities of plant transcription factors and their potential to define target genes. Proc Natl Acad Sci U S A 111(6):2367–2372. https://doi.org/10.1073/pnas.1316278111

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Toufighi K, Brady SM, Austin R et al (2005) The Botany Array Resource: e-Northerns, expression angling, and promoter analyses. Plant J 43(1):153–163. https://doi.org/10.1111/j.1365-313X.2005.02437.x

    Article  CAS  PubMed  Google Scholar 

  107. Hughes JD, Estep PW, Tavazoie S et al (2000) Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. J Mol Biol 296(5):1205–1214. https://doi.org/10.1006/jmbi.2000.3519

    Article  CAS  PubMed  Google Scholar 

  108. Bailey TL, Williams N, Misleh C et al (2006) MEME: discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Res 34(Web Server issue):W369–W373. https://doi.org/10.1093/nar/gkl198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Thijs G, Lescot M, Marchal K et al (2001) A higher-order background model improves the detection of promoter regulatory elements by Gibbs sampling. Bioinformatics 17(12):1113–1122. https://doi.org/10.1093/bioinformatics/17.12.1113

    Article  CAS  PubMed  Google Scholar 

  110. Pavesi G, Mauri G, Pesole G (2001) An algorithm for finding signals of unknown length in DNA sequences. Bioinformatics 17(Suppl 1):S207–S214. https://doi.org/10.1093/bioinformatics/17.suppl_1.s207

    Article  PubMed  Google Scholar 

  111. Tian F, Yang DC, Meng YQ et al (2020) PlantRegMap: charting functional regulatory maps in plants. Nucleic Acids Res 48(D1):D1104–D1113. https://doi.org/10.1093/nar/gkz1020

    Article  CAS  PubMed  Google Scholar 

  112. Bailey TL, Johnson J, Grant CE et al (2015) The MEME suite. Nucleic Acids Res 43(W1):W39–W49. https://doi.org/10.1093/nar/gkv416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Bailey TL, Grant CE (2021) SEA: simple enrichment analysis of motifs. bioRxiv Preprint. https://doi.org/10.1101/2021.08.23.457422

  114. Zhu G, Wu A, Xu XJ et al (2016) PPIM: a protein-protein interaction database for maize. Plant Physiol 170(2):618–626. https://doi.org/10.1104/pp.15.01821

    Article  CAS  PubMed  Google Scholar 

  115. Zhang H, Zhu J, Gong Z et al (2022) Abiotic stress responses in plants. Nat Rev Genet 23(2):104–119. https://doi.org/10.1038/s41576-021-00413-0

    Article  CAS  PubMed  Google Scholar 

  116. Brückner A, Polge C, Lentze N et al (2009) Yeast two-hybrid, a powerful tool for systems biology. Int J Mol Sci 10(6):2763–2788. https://doi.org/10.3390/ijms10062763

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Kerppola TK (2008) Bimolecular fluorescence complementation (BiFC) analysis as a probe of protein interactions in living cells. Annu Rev Biophys 37:465–487. https://doi.org/10.1146/annurev.biophys.37.032807.125842

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Kaiser P, Meierhofer D, Wang X et al (2008) Tandem affinity purification combined with mass spectrometry to identify components of protein complexes. Methods Mol Biol 439:309–326. https://doi.org/10.1007/978-1-59745-188-8_21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hall DA, Ptacek J, Snyder M (2007) Protein microarray technology. Mech Ageing Dev 128(1):161–167. https://doi.org/10.1016/j.mad.2006.11.021

    Article  CAS  PubMed  Google Scholar 

  120. Aloy P, Russell RB (2004) Ten thousand interactions for the molecular biologist. Nat Biotechnol 22(10):1317–1321. https://doi.org/10.1038/nbt1018

    Article  CAS  PubMed  Google Scholar 

  121. Ding Z, Kihara D (2018) Computational methods for predicting protein-protein interactions using various protein features. Curr Protoc Protein Sci 93(1):e62. https://doi.org/10.1002/cpps.62

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chatr-Aryamontri A, Breitkreutz BJ, Heinicke S et al (2013) The BioGRID interaction database: 2013 update. Nucleic Acids Res 41(Database issue):D816–D823. https://doi.org/10.1093/nar/gks1158

    Article  CAS  PubMed  Google Scholar 

  123. Kerrien S, Aranda B, Breuza L et al (2012) The IntAct molecular interaction database in 2012. Nucleic Acids Res 40(Database issue):D841–D846. https://doi.org/10.1093/nar/gkr1088

    Article  CAS  PubMed  Google Scholar 

  124. Garcia-Hernandez M, Berardini TZ, Chen G et al (2002) TAIR: a resource for integrated Arabidopsis data. Funct Integr Genomics 2(6):239–253. https://doi.org/10.1007/s10142-002-0077-z

    Article  CAS  PubMed  Google Scholar 

  125. Dong S, Lau V, Song R et al (2019) Proteome-wide, structure-based prediction of protein-protein interactions/new molecular interactions viewer. Plant Physiol 179(4):1893–1907. https://doi.org/10.1104/pp.18.01216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Yang X, Yang S, Qi H et al (2020) PlaPPISite: a comprehensive resource for plant protein-protein interaction sites. BMC Plant Biol 20(1):61. https://doi.org/10.1186/s12870-020-2254-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Szklarczyk D, Gable AL, Nastou KC et al (2021) The STRING database in 2021: customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res 49(D1):D605–D612. https://doi.org/10.1093/nar/gkaa1074

    Article  CAS  PubMed  Google Scholar 

  128. Thimm O, Bläsing O, Gibon Y et al (2004) MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939. https://doi.org/10.1111/j.1365-313x.2004.02016.x

    Article  CAS  PubMed  Google Scholar 

  129. Lohse M, Nagel A, Herter T et al (2014) Mercator: a fast and simple web server for genome scale functional annotation of plant sequence data. Plant Cell Environ 37(5):1250–1258. https://doi.org/10.1111/pce.12231

    Article  CAS  PubMed  Google Scholar 

  130. Geissen V, Silva V, Lwanga EH et al (2021) Cocktails of pesticide residues in conventional and organic farming systems in Europe – legacy of the past and turning point for the future. Environ Pollut 278:116827. https://doi.org/10.1016/j.envpol.2021.116827

    Article  CAS  PubMed  Google Scholar 

  131. Acosta-Dacal A, Hernández-Marrero ME, Rial-Berriel C et al (2022) Comparative study of organic contaminants in agricultural soils at the archipelagos of the Macaronesia. Environ Pollut 301:118979. https://doi.org/10.1016/j.envpol.2022.118979

    Article  CAS  PubMed  Google Scholar 

  132. Zhao FJ, Tang Z, Song JJ et al (2022) Toxic metals and metalloids: uptake, transport, detoxification, phytoremediation, and crop improvement for safer food. Mol Plant 15(1):27–44. https://doi.org/10.1016/j.molp.2021.09.016

    Article  CAS  PubMed  Google Scholar 

  133. Behringer C, Bartsch K, Schaller A (2011) Safeners recruit multiple signalling pathways for the orchestrated induction of the cellular xenobiotic detoxification machinery in Arabidopsis. Plant Cell Environ 34(11):1970–1985. https://doi.org/10.1111/j.1365-3040.2011.02392.x

    Article  CAS  PubMed  Google Scholar 

  134. Hershey HP, Stoner TD (1991) Isolation and characterization of cDNA clones for RNA species induced by substituted benzenesulfonamides in corn. Plant Mol Biol 17(4):679–690. https://doi.org/10.1007/BF00037053

    Article  CAS  PubMed  Google Scholar 

  135. Jakoby M, Weisshaar B, Dröge-Laser W et al (2002) bZIP transcription factors in Arabidopsis. Trends Plant Sci 7(3):106–111. https://doi.org/10.1016/s1360-1385(01)02223-3

    Article  CAS  PubMed  Google Scholar 

  136. Zhang Y, Fan W, Kinkema M et al (1999) Interaction of NPR1 with basic leucine zipper protein transcription factors that bind sequences required for salicylic acid induction of the PR-1 gene. Proc Natl Acad Sci U S A 96(11):6523–6528. https://doi.org/10.1073/pnas.96.11.6523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Fode B, Siemsen T, Thurow C et al (2008) The Arabidopsis GRAS protein SCL14 interacts with class II TGA transcription factors and is essential for the activation of stress-inducible promoters. Plant Cell 20(11):3122–3135. https://doi.org/10.1105/tpc.108.058974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Vandepoele K, Quimbaya M, Casneuf T et al (2009) Unraveling transcriptional control in Arabidopsis using cis-regulatory elements and coexpression networks. Plant Physiol 150(2):535–546. https://doi.org/10.1104/pp.109.136028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Zhang Y, Wang L (2005) The WRKY transcription factor superfamily: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1. https://doi.org/10.1186/1471-2148-5-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Miller G, Shulaev V, Mittler R (2008) Reactive oxygen signaling and abiotic stress. Physiol Plant 133(3):481–489. https://doi.org/10.1111/j.1399-3054.2008.01090.x

    Article  CAS  PubMed  Google Scholar 

  141. Fukudome A, Aksoy E, Wu X et al (2014) Arabidopsis CPL4 is an essential C-terminal domain phosphatase that suppresses xenobiotic stress responses. Plant J 80(1):27–39. https://doi.org/10.1111/tpj.12612

    Article  CAS  PubMed  Google Scholar 

  142. Fukudome A, Goldman JS, Finlayson SA et al (2018) Silencing Arabidopsis CARBOXYL-TERMINAL DOMAIN PHOSPHATASE-LIKE 4 induces cytokinin-oversensitive de novo shoot organogenesis. Plant J 94(5):799–812. https://doi.org/10.1111/tpj.13895

    Article  CAS  PubMed  Google Scholar 

  143. Nowak K, Morończyk J, Grzyb M et al (2022) miR172 regulates WUS during somatic embryogenesis in Arabidopsis via AP2. Cells 11(4):718. https://doi.org/10.3390/cells11040718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Fukudome A, Koiwa H (2018) Cytokinin-overinduced transcription factors and thalianol cluster genes in CARBOXYL-TERMINAL DOMAIN PHOSPHATASE-LIKE 4-silenced Arabidopsis roots during de novo shoot organogenesis. Plant Signal Behav 13(9):e1513299. https://doi.org/10.1080/15592324.2018.1513299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Li D, Bi X, Ma J et al (2022) Natural herbicidal alkaloid berberine regulates the expression of thalianol and marneral gene clusters in Arabidopsis thaliana. Pest Manag Sci 78(7):2896–2908. https://doi.org/10.1002/ps.6914

    Article  CAS  PubMed  Google Scholar 

  146. Alberto D, Couée I, Pateyron S et al (2018) Low doses of triazine xenobiotics mobilize ABA and cytokinin regulations in a stress- and low-energy-dependent manner. Plant Sci 274:8–22. https://doi.org/10.1016/j.plantsci.2018.04.025

    Article  CAS  PubMed  Google Scholar 

  147. Silva V, Mol HGJ, Zomer P et al (2019) Pesticide residues in European agricultural soils – a hidden reality unfolded. Sci Total Environ 653:1532–1545. https://doi.org/10.1016/j.scitotenv.2018.10.441

    Article  CAS  PubMed  Google Scholar 

  148. Rose MT, Zhang P, Rose TJ et al (2022) Herbicide residues in Australian grain cropping soils at sowing and their relevance to crop growth. Sci Total Environ 833:155105. https://doi.org/10.1016/j.scitotenv.2022.155105

    Article  CAS  PubMed  Google Scholar 

  149. Islam F, Wang J, Farooq MA et al (2018) Potential impact of the herbicide 2,4-dichlorophenoxyacetic acid on human and ecosystems. Environ Int 111:332–351. https://doi.org/10.1016/j.envint.2017.10.020

    Article  CAS  PubMed  Google Scholar 

  150. Grossmann K, Kwiatkowski J, Tresch S (2001) Auxin herbicides induce H2O2 overproduction and tissue damage in cleavers (Galium aparine L.). J Exp Bot 52(362):1811–1816. https://doi.org/10.1093/jexbot/52.362.1811

    Article  CAS  PubMed  Google Scholar 

  151. Pazmiño DM, Romero-Puertas MC, Sandalio LM (2012) Insights into the toxicity mechanism of and cell response to the herbicide 2,4-D in plants. Plant Signal Behav 7(3):425–427. https://doi.org/10.4161/psb.19124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Romero-Puertas MC, Peláez-Vico MÁ, Pazmiño DM et al (2022) Insights into ROS-dependent signalling underlying transcriptomic plant responses to the herbicide 2,4-D. Plant Cell Environ 45(2):572–590. https://doi.org/10.1111/pce.14229

    Article  CAS  PubMed  Google Scholar 

  153. Rosenwasser S, Fluhr R, Joshi JR et al (2013) ROSMETER: a bioinformatic tool for the identification of transcriptomic imprints related to reactive oxygen species type and origin provides new insights into stress responses. Plant Physiol 163(2):1071–1083. https://doi.org/10.1104/pp.113.218206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Szklarczyk D, Gable AL, Lyon D et al (2019) STRING v11: protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res 47(D1):D607–D613. https://doi.org/10.1093/nar/gky1131

    Article  CAS  PubMed  Google Scholar 

  155. Jablonowski ND, Schäffer A, Burauel P (2011) Still present after all these years: persistence plus potential toxicity raise questions about the use of atrazine. Environ Sci Pollut Res Int 18(2):328–331. https://doi.org/10.1007/s11356-010-0431-y

    Article  CAS  PubMed  Google Scholar 

  156. Ramel F, Sulmon C, Cabello-Hurtado F et al (2007) Genome-wide interacting effects of sucrose and herbicide-mediated stress in Arabidopsis thaliana: novel insights into atrazine toxicity and sucrose-induced tolerance. BMC Genomics 8:450. https://doi.org/10.1186/1471-2164-8-450

    Article  PubMed  PubMed Central  Google Scholar 

  157. Ramel F, Sulmon C, Bogard M et al (2009) Differential patterns of reactive oxygen species and antioxidative mechanisms during atrazine injury and sucrose-induced tolerance in Arabidopsis thaliana plantlets. BMC Plant Biol 9:28. https://doi.org/10.1186/1471-2229-9-28

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Serra AA, Miqueau A, Ramel F et al (2019) Species- and organ-specific responses of agri-environmental plants to residual agricultural pollutants. Sci Total Environ 694:133661. https://doi.org/10.1016/j.scitotenv.2019.133661

    Article  CAS  PubMed  Google Scholar 

  159. Serra AA, Couée I, Renault D et al (2015) Metabolic profiling of Lolium perenne shows functional integration of metabolic responses to diverse subtoxic conditions of chemical stress. J Exp Bot 66(7):1801–1816. https://doi.org/10.1093/jxb/eru518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Serra AA, Nuttens A, Larvor V et al (2013) Low environmentally relevant levels of bioactive xenobiotics and associated degradation products cause cryptic perturbations of metabolism and molecular stress responses in Arabidopsis thaliana. J Exp Bot 64(10):2753–2766. https://doi.org/10.1093/jxb/ert119

    Article  CAS  PubMed  Google Scholar 

  161. Alberto D, Couée I, Sulmon C et al (2017) Root-level exposure reveals multiple physiological toxicity of triazine xenobiotics in Arabidopsis thaliana. J Plant Physiol 212:105–114. https://doi.org/10.1016/j.jplph.2017.01.013

    Article  CAS  PubMed  Google Scholar 

  162. Szklarczyk D, Franceschini A, Wyder S et al (2015) STRING v10: protein-protein interaction networks, integrated over the tree of life. Nucleic Acids Res 43(Database issue):D447–D452. https://doi.org/10.1093/nar/gku1003

    Article  CAS  PubMed  Google Scholar 

  163. Couée I, Serra AA, Ramel F et al (2013) Physiology and toxicology of hormone-disrupting chemicals in higher plants. Plant Cell Rep 32(6):933–941. https://doi.org/10.1007/s00299-013-1428-z

    Article  CAS  PubMed  Google Scholar 

  164. Alberto D, Serra AA, Sulmon C et al (2016) Herbicide-related signaling in plants reveals novel insights for herbicide use strategies, environmental risk assessment and global change assessment challenges. Sci Total Environ 569–570:1618–1628. https://doi.org/10.1016/j.scitotenv.2016.06.064

    Article  CAS  PubMed  Google Scholar 

  165. Alberto D, Ramel F, Sulmon C et al (2022) Differential effects of root-level exposure to triazine xenobiotics on root development plasticity in Arabidopsis thaliana. Acta Physiol Plantarum 44:111. https://doi.org/10.1007/s11738-022-03449-9

  166. Brenner WG, Schmülling T (2015) Summarizing and exploring data of a decade of cytokinin-related transcriptomics. Front Plant Sci 6:29. https://doi.org/10.3389/fpls.2015.00029

    Article  PubMed  PubMed Central  Google Scholar 

  167. Rizwan M, Ali S, Adrees M et al (2017) A critical review on effects, tolerance mechanisms and management of cadmium in vegetables. Chemosphere 182:90–105. https://doi.org/10.1016/j.chemosphere.2017.05.013

    Article  CAS  PubMed  Google Scholar 

  168. Xian J, Wang Y, Niu K et al (2020) Transcriptional regulation and expression network responding to cadmium stress in a Cd-tolerant perennial grass Poa Pratensis. Chemosphere 250:126158. https://doi.org/10.1016/j.chemosphere.2020.126158

    Article  CAS  PubMed  Google Scholar 

  169. Rawat N, Singla-Pareek SL, Pareek A (2021) Membrane dynamics during individual and combined abiotic stresses in plants and tools to study the same. Physiol Plant 171(4):653–676. https://doi.org/10.1111/ppl.13217

    Article  CAS  PubMed  Google Scholar 

  170. Mo Y, Jiao Y (2022) Advances and applications of single-cell omics technologies in plant research. Plant J 110(6):1551–1563. https://doi.org/10.1111/tpj.15772

    Article  CAS  PubMed  Google Scholar 

  171. Tripathi RK, Wilkins O (2021) Single cell gene regulatory networks in plants: opportunities for enhancing climate change stress resilience. Plant Cell Environ 44(7):2006–2017. https://doi.org/10.1111/pce.14012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Swift J, Greenham K, Ecker JR et al (2022) The biology of time: dynamic responses of cell types to developmental, circadian and environmental cues. Plant J 109(4):764–778. https://doi.org/10.1111/tpj.15589

    Article  CAS  PubMed  Google Scholar 

  173. Erbe R, Gore J, Gemmill K et al (2022) The use of machine learning to discover regulatory networks controlling biological systems. Mol Cell 82(2):260–273. https://doi.org/10.1016/j.molcel.2021.12.011

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Jung H, Winefield C, Bombarely A et al (2019) Tools and strategies for long-read sequencing and de novo assembly of plant genomes. Trends Plant Sci 24(8):700–724. https://doi.org/10.1016/j.tplants.2019.05.003

  175. Birnbaum KD, Otegui MS, Bailey-Serres J et al (2022) The Plant Cell Atlas: focusing new technologies on the kingdom that nourishes the planet. Plant Physiol 188(2):675–679. https://doi.org/10.1093/plphys/kiab584

    Article  CAS  PubMed  Google Scholar 

  176. Plant Cell Atlas Consortium, Jha SG, Borowsky AT et al (2021) Vision, challenges and opportunities for a Plant Cell Atlas. elife 10:e66877. https://doi.org/10.7554/eLife.66877

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gwenola Gouesbet .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Gouesbet, G. (2023). Deciphering Macromolecular Interactions Involved in Abiotic Stress Signaling: A Review of Bioinformatics Analysis. In: Couée, I. (eds) Plant Abiotic Stress Signaling. Methods in Molecular Biology, vol 2642. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3044-0_15

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3044-0_15

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3043-3

  • Online ISBN: 978-1-0716-3044-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics