Skip to main content

Application of Bioinformatics in Understanding of Plant Stress Tolerance

  • Chapter
  • First Online:
Plant Bioinformatics

Abstract

Understanding the complex regulatory pathways of abiotic stress tolerance warrants in-depth study of a biological system. Recent emergence of the novel “-omics” technologies, such as genomics, proteomics, and metabolomics, enables us to study and identify the genetic elements behind systems complexity. The major challenge in this genomics era is to store and handle staggering volume of information contained within the genome scaffolds or even within the transcriptomics data available for more plant species; it would not be an exaggeration to state that the bioinformatics has been efficiently integrated in the modern -omics research. Various bioinformatics softwares and tools like sequence analysis and similarity searching tools; genome sequencing tools; genome annotation tools; de novo genome assembly tools; transcriptome, proteome, and metabolome analysis; and visualization tools help us to analyze biological information providing novel insights into the organization of biological systems. This specific -omics knowledge could subsequently be harnessed to develop improved crop plants in terms of quality and productivity, showing enhanced level of abiotic stress tolerance and disease resistance. The bioinformatics in post-genomics era is revolutionizing the way experiments are designed in molecular biology, thus making substantial contributions in increasing scientific knowledge while adding new functionalities and perspectives to genetic engineering programs for enhancing stress tolerance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

References

  • Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537(7620):347–355

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Chikayama E, Yuasa H, Shimada Y, Tohge T, Shinozaki K, Hirai MY, Sakurai T, Kikuchi J, Saito K (2008) PRIMe: a web site that assembles tools for metabolomics and transcriptomics. Silicon Biol 8(3,4):339–345

    CAS  Google Scholar 

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    Article  CAS  PubMed  Google Scholar 

  • Anandkumar BW, Haga S, Wu HF (2014) Computer applications making rapid advances in high throughput microbial proteomics (HTMP). Comb Chem High Throughput Screen 17(2):173–182

    Article  CAS  PubMed  Google Scholar 

  • Andreeva A, Howorth D, Chandonia JM, Brenner SE, Hubbard TJ, Chothia C, Murzin AG (2008) Data growth and its impact on the SCOP database: new developments. Nucleic Acids Res 36(suppl 1):D419–D425

    CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408(6814):796

    Article  Google Scholar 

  • Ashikari M, Sakakibara H, Lin S, Yamamoto T, Takashi T, Nishimura A, Angeles ER, Qian Q, Kitano H, Matsuoka M (2005) Cytokinin oxidase regulates rice grain production. Science 309(5735):741–745

    Article  CAS  PubMed  Google Scholar 

  • Ayguade E, Navarro JJ, Jimenez-Gonzalez D (2007) Smith-waterman algorithm http://docencia.ac.upc.edu/master/AMPP/slides/ampp_sw_presentation.pdf

  • Bader GD, Cary MP, Sander C (2006) Pathguide: a pathway resource list. Nucleic Acids Res 34(suppl 1):D504–D506

    Article  CAS  PubMed  Google Scholar 

  • Barrett T, Troup DB, Wilhite SE, Ledoux P, Rudnev D, Evangelista C, Kim IF, Soboleva A, Tomashevsky M, Marshall KA, Phillippy KH (2009) NCBI GEO: archive for high-throughput functional genomic data. Nucleic Acids Res 37(suppl 1):D885–D890

    Article  CAS  PubMed  Google Scholar 

  • Beckers V, Dersch LM, Lotz K, Melzer G, Bläsing OE, Fuchs R, Ehrhardt T, Wittmann C (2016) In silico metabolic network analysis of Arabidopsis leaves. BMC Syst Biol 10(1):102

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Benson DA, Cavanaugh M, Clark K, Karsch-Mizrachi I, Lipman DJ, Ostell J, Sayers EW (2013) GenBank. Nucleic Acids Res 41(D1):D36–D42

    Article  CAS  PubMed  Google Scholar 

  • Bern M, Cai Y, Goldberg D (2007) Lookup peaks: a hybrid of de novo sequencing and database search for protein identification by tandem mass spectrometry. Anal Chem 79(4):1393–1400

    Article  CAS  PubMed  Google Scholar 

  • Brady SM, Provart NJ (2009) Web-queryable large-scale data sets for hypothesis generation in plant biology. Plant Cell 21(4):1034–1051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, Dinneny JR, Mace D, Ohler U, Benfey PN (2007) A high-resolution root spatiotemporal map reveals dominant expression patterns. Science 318(5851):801–806

    Article  CAS  PubMed  Google Scholar 

  • Brenchley R, Spannagl M, Pfeifer M, Barker GL, D’Amore R, Allen AM, McKenzie N, Kramer M, Kerhornou A, Bolser D, Kay S (2012) Analysis of the bread wheat genome using whole-genome shotgun sequencing. Nature 491(7426):705–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Brenner S, Johnson M, Bridgham J, Golda G, Lloyd DH, Johnson D, Luo S, McCurdy S, Foy M, Ewan M, Roth R (2000) Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays. Nat Biotechnol 18(6):630–634

    Article  CAS  PubMed  Google Scholar 

  • Brownstein CA, Beggs AH, Homer N, Merriman B, Timothy WY, Flannery KC, DeChene ET, Towne MC, Savage SK, Price EN, Holm IA (2014) An international effort towards developing standards for best practices in analysis, interpretation and reporting of clinical genome sequencing results in the CLARITY challenge. Genome Biol 15(3):R53

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Bülow L, Bolívar JC, Ruhe J, Brill Y, Hehl R (2012) ‘MicroRNA targets’, a new AthaMap web-tool for genome-wide identification of miRNA targets in Arabidopsis thaliana. BioData Min 5(1):7

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Cary MP, Bader GD, Sander C (2005) Pathway information for systems biology. FEBS Lett 579(8):1815–1820

    Article  CAS  PubMed  Google Scholar 

  • Castillo-Peinado LS, de Castro ML (2016) Present and foreseeable future of metabolomics in forensic analysis. Anal Chim Acta 925:1–5

    Article  CAS  PubMed  Google Scholar 

  • Cerami EG, Bader GD, Gross BE, Sander C (2006) cPath: open source software for collecting, storing, and querying biological pathways. BMC Bioinforma 7(1):497

    Article  CAS  Google Scholar 

  • Chandran AK, Jung KH (2014) Resources for systems biology in rice. J Plant Biol 57(2):80–92

    Article  CAS  Google Scholar 

  • Chen X, Qi X, Duan LX (2015) Overview. In: Plant metabolomics. Springer, Netherlands, pp 1–24

    Google Scholar 

  • Cheng Y, Qi Y, Zhu Q, Chen X, Wang N, Zhao X, Chen H, Cui X, Xu L, Zhang W (2009) New changes in the plasma-membrane-associated proteome of rice roots under salt stress. Proteomics 9(11):3100–3114

    Article  CAS  PubMed  Google Scholar 

  • Claverie JM, Notredame C (2003) Bioinformatics for dummies. Willey Publ. Inc, New York, p 452

    Google Scholar 

  • Close TJ, Wanamaker S, Roose ML, Lyon M (2007) HarvEST: an EST database and viewing software. Humana Press, New York

    Google Scholar 

  • Coman D, Gruissem W, Hennig L (2013) Transcript profiling in arabidopsis with genome tiling microarrays. In: Tiling arrays: methods and protocols. Humana Press, Totowa, pp 35–49

    Chapter  Google Scholar 

  • Cui J, Li P, Li G, Xu F, Zhao C, Li Y, Yang Z, Wang G, Yu Q, Li Y, Shi T (2008) AtPID: Arabidopsis thaliana protein interactome database-an integrative platform for plant systems biology. Nucleic Acids Res 36(suppl 1):D999–1008

    CAS  PubMed  Google Scholar 

  • De Bodt S, Maere S, Van de Peer Y (2005) Genome duplication and the origin of angiosperms. Trends Ecol Evol 20(11):591–597

    Article  PubMed  Google Scholar 

  • De Bodt S, Carvajal D, Hollunder J, Van den Cruyce J, Movahedi S, Inzé D (2010) CORNET: a user-friendly tool for data mining and integration. Plant Physiol 152(3):1167–1179

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • De Jong WA, Walker AM, Hanwell MD (2013) From data to analysis: linking NWChem and Avogadro with the syntax and semanticsof chemical markup language. J Chem 5(1):25

    Article  CAS  Google Scholar 

  • Demir E, Cary MP, Paley S, Fukuda K, Lemer C, Vastrik I, Wu G, D’eustachio P, Schaefer C, Luciano J, Schacherer F (2010) The BioPAX community standard for pathway data sharing. Nat Biotechnol 28(9):935–942

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis AA, Del Angel G, Rivas MA, Hanna M, McKenna A (2011) A framework for variation discovery and genotyping using next-generation DNA sequencing data. Nat Genet 43(5):491–498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey AK, Yadav S, Kumar M, Singh VK, Sarangi BK, Yadav D (2010) In silico characterization of pectate lyase protein sequences from different source organisms. Enzym Res 2010:950230

    Google Scholar 

  • Dunkley TP, Hester S, Shadforth IP, Runions J, Weimar T, Hanton SL, Griffin JL, Bessant C, Brandizzi F, Hawes C, Watson RB (2006) Mapping the Arabidopsis organelle proteome. Proc Natl Acad Sci 103(17):6518–6523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Duvick J, Fu A, Muppirala U, Sabharwal M, Wilkerson MD, Lawrence CJ, Lushbough C, Brendel V (2008) PlantGDB: a resource for comparative plant genomics. Nucleic Acids Res 36(suppl 1):D959–D965

    CAS  PubMed  Google Scholar 

  • Elias JE, Haas W, Faherty BK, Gygi SP (2005) Comparative evaluation of mass spectrometry platforms used in large-scale proteomics investigations. Nat Methods 2(9):667–675

    Article  CAS  PubMed  Google Scholar 

  • Ernst M, Silva DB, Silva RR, Vêncio RZ, Lopes NP (2014) Mass spectrometry in plant metabolomics strategies: from analytical platforms to data acquisition and processing. Nat Prod Rep 31(6):784–806

    Article  CAS  PubMed  Google Scholar 

  • Esposito A, Colantuono C, Ruggieri V, Chiusano ML (2016) Bioinformatics for agriculture in the next-generation sequencing era. Chem Biol Technol Agric 3(1):9

    Article  CAS  Google Scholar 

  • Eyras E, Reymond A, Castelo R, Bye JM, Camara F, Flicek P, Huckle EJ, Parra G, Shteynberg DD, Wyss C, Rogers J, Antonarakis SE, Birney E, Guigo R, Brent MR (2005) Gene finding in the chicken genome. BMC Bioinforma 6(1):131

    Article  CAS  Google Scholar 

  • Fernie AR, Schauer N (2009) Metabolomics-assisted breeding: a viable option for crop improvement? Trends Genet 25(1):39–48

    Article  CAS  PubMed  Google Scholar 

  • Finn RD, Coggill P, Eberhardt RY, Eddy SR, Mistry J, Mitchell AL, Potter SC, Punta M, Qureshi M, Sangrador-Vegas A, Salazar GA, Tate J, Bateman A (2016) The Pfam protein families database: towards a more sustainable future. Nucleic Acids Res 44(D1):D279–D285

    Article  CAS  PubMed  Google Scholar 

  • Fujita M, Mizukado S, Fujita Y, Ichikawa T, Nakazawa M, Seki M, Matsui M, Yamaguchi-Shinozaki K, Shinozaki K (2007) Identification of stress-tolerance-related transcription-factor genes via mini-scale full-length cDNA over-eXpressor (FOX) gene hunting system. Biochem Biophys Res Commun 364(2):250–257

    Article  CAS  PubMed  Google Scholar 

  • Fukuchi S, Homma K, Sakamoto S, Sugawara H, Tateno Y, Gojobori T, Nishikawa K (2009) The GTOP database in 2009: updated content and novel features to expand and deepen insights into protein structures and functions. Nucleic Acids Res 37(suppl 1):D333–D337

    Article  CAS  PubMed  Google Scholar 

  • Futamura N, Totoki Y, Toyoda A, Igasaki T, Nanjo T, Seki M, Sakaki Y, Mari A, Shinozaki K, Shinohara K (2008) Characterization of expressed sequence tags from a full-length enriched cDNA library of Cryptomeria japonica male strobili. BMC Genomics 9(1):383

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gao J, Agrawal GK, Thelen JJ, Xu D (2009) P3DB: a plant protein phosphorylation database. Nucleic Acids Res 37(suppl 1):D960–D962

    Article  CAS  PubMed  Google Scholar 

  • Gibson G, Muse S (2002) A primer in genome science. Sinauer Ass., Sunderland, p 347

    Google Scholar 

  • Glover R, Adams I, Boonham N, Tomlinson J, Mumford R (2016) Next-generation sequencing. In: Molecular methods in plant disease diagnostics: principles and protocols. CABI, Wallingford, Oxfordshire, UK. p 141

    Google Scholar 

  • Goff SA, Ricke D, Lan TH, Presting G, Wang R, Dunn M, Glazebrook J, Sessions A, Oeller P, Varma H, Hadley D (2002) A draft sequence of the rice genome (Oryza Sativa L. ssp. Japonica). Science 296(5565):92–100

    Article  CAS  PubMed  Google Scholar 

  • Grafahrend-Belau E, Weise S, Koschützki D, Scholz U, Junker BH, Schreiber F (2008) MetaCrop: a detailed database of crop plant metabolism. Nucleic Acids Res 36(suppl 1):D954–D958

    CAS  PubMed  Google Scholar 

  • Greene LH, Lewis TE, Addou S, Cuff A, Dallman T, Dibley M, Redfern O, Pearl F, Nambudiry R, Reid A, Sillitoe I (2007) The CATH domain structure database: new protocols and classification levels give a more comprehensive resource for exploring evolution. Nucleic Acids Res 35(suppl 1):D291–D297

    Article  CAS  PubMed  Google Scholar 

  • Grimplet J, Cramer GR, Dickerson JA, Mathiason K, Van Hemert J, Fennell AY (2009) VitisNet:“Omics” integration through grapevine molecular networks. PLoS One 4(12):e8365

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gupta P, Naithani S, Tello-Ruiz MK, Chougule K, D’Eustachio P, Fabregat A, Jiao Y, Keays M, Lee YK, Kumari S, Mulvaney J (2016) Gramene database: navigating plant comparative genomics resources. Curr Plant Biol. 7:10–15

    Google Scholar 

  • Haas BJ, Delcher AL, Wortman JR, Salzberg SL (2004) DAGchainer: a tool for mining segmental genome duplications and synteny. Bioinformatics 20(18):3643–3646

    Article  CAS  PubMed  Google Scholar 

  • Haas BJ, Papanicolaou A, Yassour M, Grabherr M, Blood PD, Bowden J, Couger MB, Eccles D, Li B, Lieber M, MacManes MD (2013) De novo transcript sequence reconstruction from RNA-seq using the trinity platform for reference generation and analysis. Nat Protoc 8(8):1494–1512

    Article  CAS  PubMed  Google Scholar 

  • Handelsman J (2004) Metagenomics: application of genomics to uncultured microorganisms. Microbiol Mol Biol Rev 68(4):669–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanisch D, Zimmer R, Lengauer T (2002) ProML-the protein markup language for specification of protein sequences, structures and families. In Silico Biol 2(3):313–324

    CAS  PubMed  Google Scholar 

  • Hassani-Pak K, Castellote M, Esch M, Hindle M, Lysenko A, Taubert J, Rawlings C (2016) Developing integrated crop knowledge networks to advance candidate gene discovery. Appl Transl Genom 11:18–26

    Article  PubMed  PubMed Central  Google Scholar 

  • Haydarlou R, Jacobsen A, Bonzanni N, Feenstra KA, Abeln S, Heringa J (2016) BioASF: a framework for automatically generating executable pathway models specified in BioPAX. Bioinformatics 32(12):i60–i69

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hruz T, Laule O, Szabo G, Wessendorp F, Bleuler S, Oertle L, Widmayer P, Gruissem W, Zimmermann P (2008) Genevestigator v3: a reference expression database for the meta-analysis of transcriptomes. Adv Bioinforma 2008:420747

    Article  Google Scholar 

  • Huang X, Feng Q, Qian Q, Zhao Q, Wang L, Wang A, Guan J, Fan D, Weng Q, Huang T, Dong G (2009) High-throughput genotyping by whole-genome resequencing. Genome Res 19(6):1068–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hubbard TJ, Aken BL, Ayling S, Ballester B, Beal K, Bragin E, Brent S, Chen Y, Clapham P, Clarke L, Coates G (2009) Ensembl 2009. Nucleic Acids Res 37(suppl 1):D690–D697

    Article  CAS  PubMed  Google Scholar 

  • Hucka M (2015) Systems biology markup language (SBML). In: Encyclopedia of Computational Neuroscience. Jaeger D and Jung R (eds.), Springer, New York, p 2943–2944

    Google Scholar 

  • Itoh T, Tanaka T, Barrero RA, Yamasaki C, Fujii Y, Hilton PB, Antonio BA, Aono H, Apweiler R, Bruskiewich R, Bureau T (2007) Curated genome annotation of Oryza Sativa ssp. Japonica and comparative genome analysis with Arabidopsis Thaliana. Genome Res 17(2):175–183

    Article  PubMed  PubMed Central  Google Scholar 

  • Jaiswal P, Usadel B (2016) Plant pathway databases. Plant Bioinforma: Methods Protocols 2016:71–87

    Article  CAS  Google Scholar 

  • Jaiswal P, Ni J, Yap I, Ware D, Spooner W, Youens-Clark K, Ren L, Liang C, Zhao W, Ratnapu K, Faga B (2006) Gramene: a bird’s eye view of cereal genomes. Nucleic Acids Res 34(suppl 1):D717–D723

    Article  CAS  PubMed  Google Scholar 

  • Jeong DH, Darvish A, Najarian K, Yang J, Ribarsky W (2008) Interactive visual analysis of time-series microarray data. Vis Comput 24(12):1053–1066

    Article  Google Scholar 

  • Jia M, Choi SY, Reiners D, Wurtele ES, Dickerson JA (2010) MetNetGE: interactive views of biological networks and ontologies. BMC Bioinforma 11(1):469

    Article  CAS  Google Scholar 

  • Jiao Y, Tausta SL, Gandotra N, Sun N, Liu T, Clay NK, Ceserani T, Chen M, Ma L, Holford M, Zhang HY (2009) A transcriptome atlas of rice cell types uncovers cellular, functional and developmental hierarchies. Nat Genet 41(2):258–263

    Article  CAS  PubMed  Google Scholar 

  • Jorrín-Novo JV, Maldonado AM, Echevarría-Zomeño S, Valledor L, Castillejo MA, Curto M, Valero J, Sghaier B, Donoso G, Redondo I (2009) Plant proteomics update (2007–2008): second-generation proteomic techniques, an appropriate experimental design, and data analysis to fulfill MIAPE standards, increase plant proteome coverage and expand biological knowledge. J Proteome 72(3):285–314

    Article  CAS  Google Scholar 

  • Joshi R, Karan R, Singla-Pareek SL, Pareek A (2012) Microarray technology. In: Gupta AK, Pareek A, Gupta SM (eds) Biotechnology in medicine and agriculture: principles and practices. IK International Publishing House Pvt. Ltd., New Delhi, pp 273–296

    Google Scholar 

  • Joshi R, Karan R, Singla-Pareek SL, Pareek A (2016) Ectopic expression of Pokkali phosphoglycerate kinase-2 (OsPGK2-P) improves yield in tobacco plants under salinity stress. Plant Cell Rep 35(1):27–41

    Article  CAS  PubMed  Google Scholar 

  • Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, Okuda S, Tokimatsu T, Yamanishi Y (2008) KEGG for linking genomes to life and the environment. Nucleic Acids Res 36(suppl 1):D480–D484

    CAS  PubMed  Google Scholar 

  • Karlsson J, Trelles O (2013) MAPI: a software framework for distributed biomedical applications. J Biomed Semant 4(1):4

    Article  Google Scholar 

  • Kaundal R, Saini R, Zhao PX (2010) Combining machine learning and homology-based approaches to accurately predict subcellular localization in Arabidopsis. Plant Physiol 154(1):36–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kawaura K, Mochida K, Yamazaki Y, Ogihara Y (2006) Transcriptome analysis of salinity stress responses in common wheat using a 22k oligo-DNA microarray. Funct Integr Genomics 6(2):132–142

    Article  CAS  PubMed  Google Scholar 

  • Kerrien S, Aranda B, Breuza L, Bridge A, Broackes-Carter F, Chen C, Duesbury M, Dumousseau M, Feuermann M, Hinz U, Jandrasits C (2011) The IntAct molecular interaction database in 2012. Nucleic Acids Res 24:gkr1088

    Google Scholar 

  • Komatsu S (2005) Rice proteome database: a step toward functional analysis of the rice genome. Plant Mol Biol 59(1):179–190

    Article  CAS  PubMed  Google Scholar 

  • Kondou Y, Higuchi M, Takahashi S, Sakurai T, Ichikawa T, Kuroda H, Yoshizumi T, Tsumoto Y, Horii Y, Kawashima M, Hasegawa Y (2009) Systematic approaches to using the FOX hunting system to identify useful rice genes. Plant J 57(5):883–894

    Article  CAS  PubMed  Google Scholar 

  • Konishi S, Izawa T, Lin SY, Ebana K, Fukuta Y, Sasaki T, Yano M (2006) An SNP caused loss of seed shattering during rice domestication. Science 312(5778):1392–1396

    Article  CAS  PubMed  Google Scholar 

  • Kopka J, Schauer N, Krueger S, Birkemeyer C, Usadel B, Bergmüller E, Dörmann P, Weckwerth W, Gibon Y, Stitt M, Willmitzer L (2005) GMD@ CSB. DB: the Golm metabolome database. Bioinformatics 21(8):1635–1638

    Article  CAS  PubMed  Google Scholar 

  • Kouranov A, Xie L, de la Cruz J, Chen L, Westbrook J, Bourne PE, Berman HM (2006) The RCSB PDB information portal for structural genomics. Nucleic Acids Res 34(suppl 1):D302–D305

    Article  CAS  PubMed  Google Scholar 

  • Krishnakumar V, Hanlon MR, Contrino S, Ferlanti ES, Karamycheva S, Kim M, Rosen BD, Cheng CY, Moreira W, Mock SA, Stubbs J (2014) Araport: the Arabidopsis information portal. Nucleic Acids Res 20:gku1200

    Google Scholar 

  • Kumari AC, Srinivas K (2016) Hyper-heuristic approach for multi-objective software module clustering. J Syst Softw 117:384–401

    Article  Google Scholar 

  • Kurakawa T, Ueda N, Maekawa M, Kobayashi K, Kojima M, Nagato Y, Sakakibara H, Kyozuka J (2007) Direct control of shoot meristem activity by a cytokinin-activating enzyme. Nature 445(7128):652–655

    Article  CAS  PubMed  Google Scholar 

  • Kuromori T, Takahashi S, Kondou Y, Shinozaki K, Matsui M (2009) Phenome analysis in plant species using loss-of-function and gain-of-function mutants. Plant Cell Physiol 50(7):1215–1231

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamesch P, Berardini TZ, Li D, Swarbreck D, Wilks C, Sasidharan R, Muller R, Dreher K, Alexander DL, Garcia-Hernandez M, Karthikeyan AS (2012) The Arabidopsis information resource (TAIR): improved gene annotation and new tools. Nucleic Acids Res 40(D1):D1202–D1210

    Article  CAS  PubMed  Google Scholar 

  • Lee TL, Luk ACS (2013) Tilling arrays: Methods and protocols. Humana Press, New York. pp 236

    Google Scholar 

  • Lee Y, Tsai J, Sunkara S, Karamycheva S, Pertea G, Sultana R, Antonescu V, Chan A, Cheung F, Quackenbush J (2005) The TIGR gene indices: clustering and assembling EST and known genes and integration with eukaryotic genomes. Nucleic Acids Res 33(suppl 1):D71–D74

    CAS  PubMed  Google Scholar 

  • Lescot M, Déhais P, Thijs G, Marchal K, Moreau Y, Van de Peer Y, Rouzé P, Rombauts S (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30(1):325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li J, Zhang M, Li D, Zhang W, Wang J (2015) Construction scheme of NSFC Open Access Library. Int J Secur Appl 9(8):243–252

    CAS  Google Scholar 

  • Liang C, Jaiswal P, Hebbard C, Avraham S, Buckler ES, Casstevens T, Hurwitz B, McCouch S, Ni J, Pujar A, Ravenscroft D (2008) Gramene: a growing plant comparative genomics resource. Nucleic Acids Res 36(suppl 1):D947–D953

    CAS  PubMed  Google Scholar 

  • Lin M, Zhou X, Shen X, Mao C, Chen X (2011) The predicted Arabidopsis interactome resource and network topology-based systems biology analyses. Plant Cell 23(3):911–922

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ma JF, Tamai K, Yamaji N, Mitani N, Konishi S, Katsuhara M, Ishiguro M, Murata Y, Yano M (2006) A silicon transporter in rice. Nature 440(7084):688–691

    Article  CAS  PubMed  Google Scholar 

  • Ma JF, Yamaji N, Mitani N, Tamai K, Konishi S, Fujiwara T, Katsuhara M, Yano M (2007) An efflux transporter of silicon in rice. Nature 448(7150):209–212

    Article  CAS  PubMed  Google Scholar 

  • Maeda N, Kasukawa T, Oyama R, Gough J, Frith M, Engström PG, Lenhard B, Aturaliya RN, Batalov S, Beisel KW, Bult CJ (2006) Transcript annotation in FANTOM3: mouse gene catalog based on physical cDNAs. PLoS Genet 2(4):e62

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Malhotra S, Sowdhamini R (2014) Interactions among plant transcription factors regulating expression of stress-responsive genes. Bioinforma Biol Insights 8:193

    Article  CAS  Google Scholar 

  • Maruyama K, Takeda M, Kidokoro S, Yamada K, Sakuma Y, Urano K, Fujita M, Yoshiwara K, Matsukura S, Morishita Y, Sasaki R (2009) Metabolic pathways involved in cold acclimation identified by integrated analysis of metabolites and transcripts regulated by DREB1A and DREB2A. Plant Physiol 150(4):1972–1980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Matsui A, Ishida J, Morosawa T, Mochizuki Y, Kaminuma E, Endo TA, Okamoto M, Nambara E, Nakajima M, Kawashima M, Satou M (2008) Arabidopsis transcriptome analysis under drought, cold, high-salinity and ABA treatment conditions using a tiling array. Plant Cell Physiol 49(8):1135–1149

    Article  CAS  PubMed  Google Scholar 

  • Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter I, Chekmenev D, Krull M, Hornischer K, Voss N (2006) TRANSFAC® and its module TRANSCompel®: transcriptional gene regulation in eukaryotes. Nucleic Acids Res 34(suppl 1):D108–D110

    Article  CAS  PubMed  Google Scholar 

  • McCarthy FM, Wang N, Magee GB, Nanduri B, Lawrence ML, Camon EB, Barrell DG, Hill DP, Dolan ME, Williams WP, Luthe DS, Bridges SM, Burgess SC (2006) AgBase: a functional genomics resource for agriculture. BMC Genomics 7:229

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • McKay SJ, Weiser J (2015) Installing a local copy of the Reactome web site and knowledgebase. Curr Protoc Bioinformatics 19:9–10

    Google Scholar 

  • McNicholas S, Potterton E, Wilson KS, Noble ME (2011) Presenting your structures: the CCP4mg molecular-graphics software. Acta Crystallogr D Biol Crystallogr 67(4):386–394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Michael TP, Jackson S (2013) The first 50 plant genomes. Plant Genome 6(2): 1–7. doi:10.3835/plantgenome2013.03.0001in

    Google Scholar 

  • Minami A, Fujiwara M, Furuto A, Fukao Y, Yamashita T, Kamo M, Kawamura Y, Uemura M (2009) Alterations in detergent-resistant plasma membrane microdomains in Arabidopsis Thaliana during cold acclimation. Plant Cell Physiol 50(2):341–359

    Article  CAS  PubMed  Google Scholar 

  • Mishra S, Singh B, Panda K, Singh BP, Singh N, Misra P, Rai V, Singh NK (2016a) Association of SNP haplotypes of HKT family genes with salt tolerance in Indian wild rice germplasm. Rice 9(1):15

    Article  PubMed  PubMed Central  Google Scholar 

  • Mishra S, Singh B, Misra P, Rai V, Singh NK (2016b) Haplotype distribution and association of candidate genes with salt tolerance in Indian wild rice germplasm. Plant Cell Rep 35(11):2295–2308

    Article  CAS  PubMed  Google Scholar 

  • Mochida K, Shinozaki K (2010) Genomics and bioinformatics resources for crop improvement. Plant Cell Physiol 51(4):497–523

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mochida K, Kawaura K, Shimosaka E, Kawakami N, Shin T, Kohara Y, Yamazaki Y, Ogihara Y (2006) Tissue expression map of a large number of expressed sequence tags and its application to in silico screening of stress response genes in common wheat. Mol Gen Genomics 276(3):304–312

    Article  CAS  Google Scholar 

  • Mochida K, Furuta T, Ebana K, Shinozaki K, Kikuchi J (2009) Correlation exploration of metabolic and genomic diversity in rice. BMC Genomics 10(1):568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Moco S, Bino RJ, Vorst O, Verhoeven HA, de Groot J, van Beek TA, Vervoort J, De Vos CR (2006) A liquid chromatography-mass spectrometry-based metabolome database for tomato. Plant Physiol 141(4):1205–1218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nascimento F, Guimaraes KS (2016) Copy number variations detection: unravelling the problem in tangible aspects. IEEE/ACM Trans Comput Biol Bioinforma DOI: 10.1109/TCBB.2016.2576441

    Google Scholar 

  • Needleman SB, Wunsch CD (1970) A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol 48(3):443–453

    Article  CAS  PubMed  Google Scholar 

  • Neumann RS, Kumar S, Shalchian-Tabrizi K (2014) BLAST output visualization in the new sequencing era. Brief Bioinform 15(4):484–503

    Article  PubMed  Google Scholar 

  • Nobuta K, Venu RC, Lu C, Beló A, Vemaraju K, Kulkarni K, Wang W, Pillay M, Green PJ, Wang GL, Meyers BC (2007) An expression atlas of rice mRNAs and small RNAs. Nat Biotechnol 25(4):473–477

    Article  CAS  PubMed  Google Scholar 

  • Obayashi T, Hayashi S, Saeki M, Ohta H, Kinoshita K (2009) ATTED-II provides coexpressed gene networks for Arabidopsis. Nucleic Acids Res 37(suppl 1):D987–D991

    Article  CAS  PubMed  Google Scholar 

  • de Oliveira Dal’Molin CG, Quek LE, Palfreyman RW, Brumbley SM, Nielsen LK (2010) AraGEM, a genome-scale reconstruction of the primary metabolic network in Arabidopsis. Plant Physiol 152(2):579–589

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Parkinson H, Kapushesky M, Shojatalab M, Abeygunawardena N, Coulson R, Farne A, Holloway E, Kolesnykov N, Lilja P, Lukk M, Mani R (2007) ArrayExpress—a public database of microarray experiments and gene expression profiles. Nucleic Acids Res 35(suppl 1):D747–D750

    Article  CAS  PubMed  Google Scholar 

  • Paterson AH (2008) Genomics of sorghum. Int J Plant Genom 2008:362451

    Google Scholar 

  • Pérez-Clemente RM, Vives V, Zandalinas SI, López-Climent MF, Muñoz V, Gómez-Cadenas A (2013) Biotechnological approaches to study plant responses to stress. Biomed Res Int 2013:654120

    Article  PubMed  CAS  Google Scholar 

  • Pomastowski P, Buszewski B (2014) Two-dimensional gel electrophoresis in the light of new developments. TrAC Trends Anal Chem 53:167–177

    Article  CAS  Google Scholar 

  • Price AL, Jones NC, Pevzner PA (2005) De novo identification of repeat families in large genomes. Bioinformatics 21(suppl 1):i351–i358

    Article  CAS  PubMed  Google Scholar 

  • Rhee SY, Dickerson J, Xu D (2006) Bioinformatics and its applications in plant biology. Annu Rev Plant Biol 57:335–360

    Article  CAS  PubMed  Google Scholar 

  • Rocha I, Förster J, Nielsen J (2008) Design and application of genome-scale reconstructed metabolic models. Microb Gene Essentiality: Protocols Bioinforma 2008:409–431

    Google Scholar 

  • Sakata K, Ohyanagi H, Nobori H, Nakamura T, Hashiguchi A, Nanjo Y, Mikami Y, Yunokawa H, Komatsu S (2009) Soybean proteome database: a data resource for plant differential omics. J Proteome Res 8(7):3539–3548

    Article  CAS  PubMed  Google Scholar 

  • Schatz MC, Phillippy AM, Sommer DD, Delcher AL, Puiu D, Narzisi G, Salzberg SL, Pop M (2011) Hawkeye and AMOS: visualizing and assessing the quality of genome assemblies. Brief Bioinform 23:bbr074

    Google Scholar 

  • Schnable PS, Ware D, Fulton RS, Stein JC, Wei F, Pasternak S, Liang C, Zhang J, Fulton L, Graves TA, Minx P (2009) The B73 maize genome: complexity, diversity, and dynamics. Science 326(5956):1112–1115

    Article  CAS  PubMed  Google Scholar 

  • Seki M, Shinozaki K (2009) Functional genomics using RIKEN Arabidopsis Thaliana full-length cDNAs. J Plant Res 122(4):355–366

    Article  CAS  PubMed  Google Scholar 

  • Shameer K, Ambika S, Varghese SM, Karaba N, Udayakumar M, Sowdhamini R (2009) STIFDB-Arabidopsis stress responsive transcription factor dataBase. Int J Plant Genom 2009:583429

    CAS  Google Scholar 

  • Singh VK, Singh AK, Chand R, Kushwaha C (2011) Role of bioinformatics in agriculture and sustainable development. Int J Bioinforma Res 3(2):221–226

    Article  Google Scholar 

  • Singh BP, Jayaswal PK, Singh B, Singh PK, Kumar V, Mishra S, Singh N, Panda K, Singh NK (2015) Natural allelic diversity in OsDREB1F gene in the Indian wild rice germplasm led to ascertain its association with drought tolerance. Plant Cell Rep 34(6):993–1004

    Article  CAS  PubMed  Google Scholar 

  • Singh B, Bohra A, Mishra S, Joshi R, Pandey S (2015) Embracing new-generation ‘omics’ tools to improve drought tolerance in cereal and food-legume crops. Biol Plant 59(3):413–428

    Article  CAS  Google Scholar 

  • Song Z, Chen L, Ganapathy A, Wan XF, Brechenmacher L, Tao N, Emerich D, Stacey G, Xu D (2007) Development and assessment of scoring functions for protein identification using PMF data. Electrophoresis 28(5):864–870

    Article  CAS  PubMed  Google Scholar 

  • Spellman PT, Miller M, Stewart J, Troup C, Sarkans U, Chervitz S, Bernhart D, Sherlock G, Ball C, Lepage M, Swiatek M (2002) Design and implementation of microarray gene expression markup language (MAGE-ML). Genome Biol 3(9):research0046–1

    Article  Google Scholar 

  • Stevens RC, Yokoyama S, Wilson IA (2001) Global efforts in structural genomics. Science 294(5540):89–92

    Article  CAS  PubMed  Google Scholar 

  • Stormo GD (2000) DNA binding sites: representation and discovery. Bioinformatics 16(1):16–23

    Article  CAS  PubMed  Google Scholar 

  • Sucaet Y, Deva T (2011) Evolution and applications of plant pathway resources and databases. Brief Bioinform 12(5):530–544

    Article  PubMed  Google Scholar 

  • Szklarczyk D, Franceschini A, Wyder S, Forslund K, Heller D, Huerta-Cepas J, Simonovic M, Roth A, Santos A, Tsafou KP, Kuhn M (2014) STRING v10: protein–protein interaction networks, integrated over the tree of life. Nucleic Acids Res 28:gku1003

    Google Scholar 

  • Taji T, Sakurai T, Mochida K, Ishiwata A, Kurotani A, Totoki Y, Toyoda A, Sakaki Y, Seki M, Ono H, Sakata Y (2008) Large-scale collection and annotation of full-length enriched cDNAs from a model halophyte, Thellungiella halophila. BMC Plant Biol 8(1):115

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 24(8):1596–1599

    Article  CAS  PubMed  Google Scholar 

  • Tanaka T, Antonio BA, Kikuchi S, Matsumoto T, Nagamura Y, Numa H, Sakai H, Wu J, Itoh T, Sasaki T, Aono R (2008) The rice annotation project database (RAP-DB): 2008 update. Nucleic Acids Res 36(Supp 1):D1028–D1033

    CAS  PubMed  Google Scholar 

  • Thimm O, Bläsing O, Gibon Y, Nagel A, Meyer S, Krüger P, Selbig J, Müller LA, Rhee SY, Stitt M (2004) Mapman: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J 37(6):914–939

    Article  CAS  PubMed  Google Scholar 

  • Tokimatsu T, Sakurai N, Suzuki H, Ohta H, Nishitani K, Koyama T, Umezawa T, Misawa N, Saito K, Shibata D (2005) KaPPA-view. A web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol 138(3):1289–1300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MT, Azam S, Fan G, Whaley AM, Farmer AD, Sheridan J, Iwata A, Tuteja R, Penmetsa RV, Wu W, Upadhyaya HD, Yang SP, Shah T, Saxena KB, Michael T, McCombie WR, Yang B, Zhang G, Yang H, Wang J, Spillane C, Cook DR, May GD, Xu X, Jackson SA (2011). Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol. 30:83–89

    Google Scholar 

  • Vassilev D, Leunissen J, Atanassov A, Nenov A, Dimov G (2005) Application of bioinformatics in plant breeding. Biotechnol Biotechnol Equip 19(sup3):139–152

    Article  Google Scholar 

  • Walsh JR, Schaeffer ML, Zhang P, Rhee SY, Dickerson JA, Sen TZ (2016) The quality of metabolic pathway resources depends on initial enzymatic function assignments: a case for maize. BMC Syst Biol 10(1):129

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Ware D (2007) Gramene: a resource for comparative grass genomics. Plant Bioinforma: Methods Protocols 2007:315–329

    Article  Google Scholar 

  • Weigel D, Mott R (2009) The 1001 genomes project for Arabidopsis Thaliana. Genome Biol 10(5):107

    Article  PubMed  PubMed Central  Google Scholar 

  • Winter D, Vinegar B, Nahal H, Ammar R, Wilson GV, Provart NJ (2007) An “electronic fluorescent pictograph” browser for exploring and analyzing large-scale biological data sets. PLoS One 2(8):e718

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wurtele ES, Li L, Berleant D, Cook D, Dickerson JA, Ding J, Hofmann H, Lawrence M, Lee EK, Li J, Mentzen W (2007) Metnet: systems biology tools for arabidopsis. In: Concepts in plant metabolomics. Springer, Netherlands, pp 145–157

    Chapter  Google Scholar 

  • Yamamoto YY, Obokata J (2008) PPDB: a plant promoter database. Nucleic Acids Res 36(suppl 1):D977–D981

    CAS  PubMed  Google Scholar 

  • Yamamoto YY, Yoshitsugu T, Sakurai T, Seki M, Shinozaki K, Obokata J (2009) Heterogeneity of arabidopsis core promoters revealed by high-density TSS analysis. Plant J 60(2):350–362

    Article  CAS  PubMed  Google Scholar 

  • Yamasaki C, Murakami K, Fujii Y, Sato Y, Harada E, Takeda JI, Taniya T, Sakate R, Kikugawa S, Shimada M, Tanino M (2008) The H-Invitational Database (H-InvDB), a comprehensive annotation resource for human genes and transcripts. Nucleic Acids Res 36(Database issue):D793–D799

    CAS  PubMed  Google Scholar 

  • Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz A, Mejia-Guerra MK, Kurz K, Liang X, Welch L, Grotewold E (2011) AGRIS: the Arabidopsis gene regulatory information server, an update. Nucleic Acids Res 39(suppl 1):D1118–D1122

    Article  CAS  PubMed  Google Scholar 

  • Yilmaz A, Rudolph HL, Hurst JJ, Wood TD (2016) High-throughput metabolic profiling of soybean leaves by Fourier transform ion cyclotron resonance mass spectrometry. Anal Chem 88(2):1188–1194

    Article  CAS  PubMed  Google Scholar 

  • Yokoyama S, Hirota H, Kigawa T, Yabuki T, Shirouzu M, Terada T, Ito Y, Matsuo Y, Kuroda Y, Nishimura Y, Kyogoku Y (2000) Structural genomics projects in Japan. Nat Struct Mol Biol 7:943–945

    Article  CAS  Google Scholar 

  • Yoshida R, Nei M (2016) Efficiencies of the NJp, maximum likelihood, and Bayesian methods of phylogenetic construction for compositional and noncompositional genes. Mol Biol Evol 33(6):1618–1624

    Article  CAS  PubMed  Google Scholar 

  • Zeller G, Henz SR, Widmer CK, Sachsenberg T, Rätsch G, Weigel D, Laubinger S (2009) Stress-induced changes in the Arabidopsis Thaliana transcriptome analyzed using whole-genome tiling arrays. Plant J 58(6):1068–1082

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y (2009) I-TASSER: fully automated protein structure prediction in CASP8. Proteins: Struct Funct Bioinforma 77(S9):100–113

    Article  CAS  Google Scholar 

  • Zhang H, Jin J, Tang L, Zhao Y, Gu X, Gao G, Luo J (2011) PlantTFDB 2.0: update and improvement of the comprehensive plant transcription factor database. Nucleic Acids Res 39(suppl 1):D1114–D1117

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgment

RJ acknowledges Dr. D S Kothari Postdoctoral Fellowship from University Grant Commission, Government of India. SHW acknowledges Raman Post Doctoral Fellowship from University Grant Commission, Government of India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shabir H. Wani .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Upadhyay, J. et al. (2017). Application of Bioinformatics in Understanding of Plant Stress Tolerance. In: Hakeem, K., Malik, A., Vardar-Sukan, F., Ozturk, M. (eds) Plant Bioinformatics. Springer, Cham. https://doi.org/10.1007/978-3-319-67156-7_14

Download citation

Publish with us

Policies and ethics