Skip to main content

Analysis of Plant L-Cysteine Desulfhydrase (LCD) Isozymes by Non-denaturing Polyacrylamide Gel Electrophoresis

  • Protocol
  • First Online:
Plant Abiotic Stress Signaling

Abstract

Hydrogen sulfide (H2S) is a signaling molecule that achieves different regulatory functions in animal and plant cells. The cytosolic enzyme L-cysteine desulfhydrase (LCD; EC 4.4.1.28) catalyzes the conversion of cysteine (L-Cys) to pyruvate and ammonium with the concomitant generation of H2S, this enzyme being considered one of the main sources of H2S in higher plants. Using non-denaturing polyacrylamide gel electrophoresis (PAGE) in combination with a specific assay for LCD activity, the present protocol allows identifying diverse LCD isozymes present in different organs (roots, shoots, leaves, and fruits) and plant species including pea, garlic, Arabidopsis, and pepper.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chen X, Jhee KH, Kruger WD (2004) Production of the neuromodulator H2S by cystathionine beta-synthase via the condensation of cysteine and homocysteine. J Biol Chem 279(50):52082–52086

    Article  CAS  PubMed  Google Scholar 

  2. Romero LC, García I, Gotor C (2013) L-Cysteine desulfhydrase 1 modulates the generation of the signaling molecule sulfide in plant cytosol. Plant Signal Behav 8(5):e24007

    Article  PubMed  PubMed Central  Google Scholar 

  3. Filipovic MR, Zivanovic J, Alvarez B, Banerjee R (2018) Chemical biology of H2S signaling through persulfidation. Chem Rev 118(3):1253–1337

    Article  CAS  PubMed  Google Scholar 

  4. Mukherjee S, Corpas FJ (2020) Crosstalk among hydrogen sulfide (H2S), nitric oxide (NO) and carbon monoxide (CO) in root-system development and its rhizosphere interactions: a gaseous interactome. Plant Physiol Biochem 155:800–814

    Article  CAS  PubMed  Google Scholar 

  5. Mishra V, Singh P, Tripathi DK, Corpas FJ, Singh VP (2021) Nitric oxide and hydrogen sulfide: an indispensable combination for plant functioning. Trends Plant Sci 26(12):1270–1285

    Article  CAS  PubMed  Google Scholar 

  6. Corpas FJ, González-Gordo S, Rodriguez-Ruiz M, Muñoz-Vargas MA, Palma JM (2022) Nitric oxide and hydrogen sulfide share regulatory functions in higher plant events. Biocell 46(1):1–5

    Article  CAS  Google Scholar 

  7. Zaorska E, Tomasova L, Koszelewski D, Ostaszewski R, Ufnal M (2020) Hydrogen sulfide in pharmacotherapy, beyond the hydrogen sulfide-donors. Biomolecules 10(2):323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Kimura H (2021) Hydrogen sulfide (H2S) and polysulfide (H2Sn) signaling: the first 25 years. Biomolecules 11(6):896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP (2008) Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50:1518–1529

    Article  CAS  PubMed  Google Scholar 

  10. Zhang H, Tang J, Liu XP, Wang Y, Yu W, Peng WY, Fang F, Ma DF, Wei ZJ, Hu LY (2009) Hydrogen sulfide promotes root organogenesis in Ipomoea batatas, Salix matsudana and Glycine max. J Integr Plant Biol 51(12):1086–1094

    Article  CAS  PubMed  Google Scholar 

  11. García-Mata C, Lamattina L (2010) Hydrogen sulphide, a novel gasotransmitter involved in guard cell signalling. New Phytol 188:977–984

    Article  PubMed  Google Scholar 

  12. Chen J, Wu FH, Wang WH, Zheng CJ, Lin GH, Dong XJ, He JX, Pei ZM, Zheng HL (2011) Hydrogen sulphide enhances photosynthesis through promoting chloroplast biogenesis, photosynthetic enzyme expression, and thiol redox modification in Spinacia oleracea seedlings. J Exp Bot 62(13):4481–4493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gotor C, García I, Crespo JL, Romero LC (2013) Sulfide as a signaling molecule in autophagy. Autophagy 9(4):609–611

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mei Y, Zhao Y, Jin X, Wang R, Xu N, Hu J, Huang L, Guan R, Shen W (2019) L-Cysteine desulfhydrase-dependent hydrogen sulfide is required for methane-induced lateral root formation. Plant Mol Biol 99(3):283–298

    Article  CAS  PubMed  Google Scholar 

  15. Corpas FJ, Palma JM (2020) H2S signaling in plants and applications in agriculture. J Adv Res 24:131–137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Da-Silva CJ, Rodrigues AC, Modolo LV (2021) Hydrogen sulfide signaling in the defense response of plants to abiotic stresses. In: Khan MN, Siddiqui MH, Alamri S, Corpas FJ (eds) Hydrogen sulfide and plant acclimation to abiotic stresses. Springer, Cham, pp 139–160

    Chapter  Google Scholar 

  17. Jhee KH, McPhie P, Miles EW (2000) Domain architecture of the heme-independent yeast cystathionine beta-synthase provides insights into mechanisms of catalysis and regulation. Biochemistry 39(34):10548–10556

    Article  CAS  PubMed  Google Scholar 

  18. Kabil O, Banerjee R (2014) Enzymology of H2S biogenesis, decay and signaling. Antioxid Redox Signal 20(5):770–782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. González-Gordo S, Palma JM, Corpas FJ (2020) Appraisal of H2S metabolism in Arabidopsis thaliana: in silico analysis at the subcellular level. Plant Physiol Biochem 155:579–588

    Article  PubMed  Google Scholar 

  20. Scuffi D, Álvarez C, Laspina N, Gotor C, Lamattina L, García-Mata C (2014) Hydrogen sulfide generated by L-cysteine desulfhydrase acts upstream of nitric oxide to modulate abscisic acid-dependent stomatal closure. Plant Physiol 166(4):2065–2076

    Article  PubMed  PubMed Central  Google Scholar 

  21. Muñoz-Vargas MA, González-Gordo S, Cañas A, López-Jaramillo J, Palma JM, Corpas FJ (2018) Endogenous hydrogen sulfide (H2S) is up-regulated during sweet pepper (Capsicum annuum L.) fruit ripening. In vitro analysis shows that NADP-dependent isocitrate dehydrogenase (ICDH) activity is inhibited by H2S and NO. Nitric Oxide 81:36–45

    Article  PubMed  Google Scholar 

  22. Shen J, Zhang J, Zhou M, Zhou H, Cui B, Gotor C, Romero LC, Fu L, Yang J, Foyer CH, Pan Q, Shen W, Xie Y (2020) Persulfidation-based modification of cysteine desulfhydrase and the NADPH oxidase RBOHD controls guard cell abscisic acid signaling. Plant Cell 32(4):1000–1017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Schantz ML, Schreiber H, Guillemaut P, Schantz R (1995) Changes in ascorbate peroxidase activities during fruit ripening in Capsicum annum. FEBS Lett 358(2):149–152

    Article  CAS  PubMed  Google Scholar 

  24. Corpas FJ, Palma JM, Sandalio LM, López-Huertas E, Romero-Puertas MC, Barroso JB, del Río LA (1999) Purification of catalase from pea leaf peroxisomes: identification of five different isoforms. Free Radic Res 31(Suppl):S235–S241

    Article  CAS  PubMed  Google Scholar 

  25. Chu-Puga Á, González-Gordo S, Rodríguez-Ruiz M, Palma JM, Corpas FJ (2019) NADPH oxidase (Rboh) activity is up regulated during sweet pepper (Capsicum annuum L.) fruit ripening. Antioxidants (Basel) 8(1):9

    Article  PubMed  Google Scholar 

  26. Corpas FJ, de Freitas-Silva L, García-Carbonero N, Contreras A, Terán F, Ruíz-Torres C, Palma JM (2017) Separation of plant 6-phosphogluconate dehydrogenase (6PGDH) isoforms by non-denaturing gel electrophoresis. Bio Protoc 7(14):e2399

    Article  PubMed  PubMed Central  Google Scholar 

  27. Houmani H, Rodríguez-Ruiz M, Palma JM, Abdelly C, Corpas FJ (2016) Modulation of superoxide dismutase (SOD) isozymes by organ development and high long-term salinity in the halophyte Cakile maritima. Protoplasma 253(3):885–894

    Article  CAS  PubMed  Google Scholar 

  28. González-Gordo S, Rodríguez-Ruiz M, Palma JM, Corpas FJ (2020) Superoxide radical metabolism in sweet pepper (Capsicum annuum L.) fruits is regulated by ripening and by a NO-enriched environment. Front Plant Sci 11:485

    Article  PubMed  PubMed Central  Google Scholar 

  29. Houmani H, Debez A, Freitas-Silva L, Abdelly C, Palma JM, Corpas FJ (2022) Potassium (K+) starvation-induced oxidative stress triggers a general boost of antioxidant and NADPH-generating systems in the halophyte Cakile maritima. Antioxidants (Basel) 11(2):401

    Article  CAS  PubMed  Google Scholar 

  30. Skyring GW, Trudinger PA (1972) A method for the electrophoretic characterization of sulfite reductases in crude preparations from sulfate-reducing bacteria using polyacrylamide gels. Can J Biochem 50(10):1145–1148

    Article  CAS  PubMed  Google Scholar 

  31. Willhardt I, Wiederanders B (1975) Activity staining of cystathionine-beta-synthetase and related enzymes. Anal Biochem 63(1):263–266

    Article  CAS  PubMed  Google Scholar 

  32. Hine C, Mitchell JR (2017) Endpoint or kinetic measurement of hydrogen sulfide production capacity in tissue extracts. Bio Protoc 7(13):e2382

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

Francisco J. Corpas and José M. Palma research is supported by a European Regional Development Fund cofinanced grant from the Spanish Ministry of Science and Innovation (PID2019-103924GB-I00) and the Plan Andaluz de Investigación, Desarrollo e Innovación (P18-FR-1359), Spain. The valuable technical help of Carmelo Ruiz-Torres is deeply appreciated. María A. Muñoz-Vargas acknowledges a Formación de Personal Investigador (FPI) predoctoral contract (PRE2020-093882) from the Spanish Ministry of Science, Innovation and Universities. Marta Rodríguez-Ruiz also acknowledges a postdoctoral contract associated to the grant P18-FR-1359. Salvador González-Gordo acknowledges an FPI contract (BES-2016-078368) from the Ministry of Economy and Competitiveness, Spain.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Corpas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Muñoz-Vargas, M.A., Rodríguez-Ruiz, M., González-Gordo, S., Palma, J.M., Corpas, F.J. (2023). Analysis of Plant L-Cysteine Desulfhydrase (LCD) Isozymes by Non-denaturing Polyacrylamide Gel Electrophoresis. In: Couée, I. (eds) Plant Abiotic Stress Signaling. Methods in Molecular Biology, vol 2642. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3044-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3044-0_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3043-3

  • Online ISBN: 978-1-0716-3044-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics