Skip to main content
Log in

Modulation of superoxide dismutase (SOD) isozymes by organ development and high long-term salinity in the halophyte Cakile maritima

  • Original Article
  • Published:
Protoplasma Aims and scope Submit manuscript

Abstract

Superoxide dismutase (SOD) activity catalyzes the disproportionation of superoxide radicals into hydrogen peroxide and oxygen. This enzyme is considered to be a first line of defense for controlling the production of reactive oxygen species (ROS). In this study, the number and type of SOD isozymes were identified in the principal organs (roots, stems, leaves, flowers, and seeds) of Cakile maritima. We also analyzed the way in which the activity of these SOD isozymes is modulated during development and under high long-term salinity (400 mM NaCl) stress conditions. The data indicate that this plant contains a total of ten SOD isozymes: two Mn-SODs, one Fe-SOD, and seven CuZn-SODs, with the Fe-SOD being the most prominent isozyme in the different organs analyzed. Moreover, the modulation of SOD isozymes, particularly CuZn-SODs, was only detected during development and under severe salinity stress conditions. These data suggest that, in C. maritima, the occurrence of these CuZn-SODs in roots and leaves plays an adaptive role since this CuZn-SOD isozyme might replace the diminished Fe-SOD activity under salinity stress to overcome this adverse environmental condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abreu IA, Cabelli DE (2010) Superoxide dismutases—a review of the metal-associated mechanistic variations. Biochim Biophys Acta 1804:263–274

    Article  CAS  PubMed  Google Scholar 

  • Airaki M, Leterrier M, Mateos RM, Valderrama R, Chaki M, Barroso JB, del Río LA, Palma JM, Corpas FJ (2012) Metabolism of reactive oxygen species and reactive nitrogen species in pepper (Capsicum annuum L.) plants under low temperature stress. Plant Cell Environ 35:281–295

    Article  CAS  PubMed  Google Scholar 

  • Almansa MS, Palma JM, Yáñez J, del Río LA, Sevilla F (1991) Purification of an iron-containing superoxide dismutase from a citrus plant. Citrus limonum R Free Radic Res Commun 12–13(Pt 1):319–328

    Article  PubMed  Google Scholar 

  • Alscher RG, Erturk N, Heath LS (2002) Role of superoxide dismutases (SODs) in controlling oxidative stress in plants. J Exp Bot 53:1331–1341

    Article  CAS  PubMed  Google Scholar 

  • Asada K, Kanematsu S, Okada S, Hayakawa T (1980) Phylogenic distribution of three types of superoxide dismutase in organisms and in cell organelles. In: Bannister JV (ed) Chemical and biochemical aspects of superoxide and superoxide dismutase. Elsevier, Amsterdam, pp 136–153

    Google Scholar 

  • Bannister JV, Bannister WH, Rotilio G (1987) Aspects of the structure, function, and applications of superoxide dismutase. CRC Crit Rev Biochem 22:111–180

    Article  CAS  PubMed  Google Scholar 

  • Barondeau DP, Kassmann CJ, Bruns CK, Tainer JA, Getzoff ED (2004) Nickel superoxide dismutase structure and mechanism. Biochemistry 43:8038–8047

    Article  CAS  PubMed  Google Scholar 

  • Baum JA, Scandalios JG (1981) Isolation and characterization of the cytosolic and mitochondrial superoxide dismutase of maize. Arch Biochem Biophys 206:249–264

    Article  CAS  PubMed  Google Scholar 

  • Beauchamp CO, Fridovich I (1971) Superoxide dismutase: improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276–287

    Article  CAS  PubMed  Google Scholar 

  • Begara-Morales JC, Chaki M, Sánchez-Calvo B, Mata-Pérez C, Leterrier M, Palma JM, Barroso JB, Corpas FJ (2013) Protein tyrosine nitration in pea roots during development and senescence. J Exp Bot 64:1121–34

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ben Amor N, Jiménez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C (2006) Response of antioxidant systems to NaCl stress in the halophyte Cakile maritima. Physiol Plant 126:446–457

    Article  CAS  Google Scholar 

  • Ben Amor N, Jiménez A, Megdiche W, Lundqvist M, Sevilla F, Abdelly C (2007) Kinetics of the anti-oxidant response to salinity in the halophyte Cakile maritima. J Integr Plant Biol 49:982–992

    Article  CAS  Google Scholar 

  • Ben Amor N, Megdiche W, Jiménez A, Sevilla F, Abdelly C (2010) The effect of calcium on the antioxidant systems in the halophyte Cakile maritima under salt stress. Acta Physiol Plant 32:453–461

    Article  CAS  Google Scholar 

  • Bouthour D, Kalai T, Chaffei HC, Gouia H, Corpas FJ (2015) Differential response of NADP-dehydrogenases and carbon metabolism in leaves and roots of two durum wheat (Triticum durum Desf.) cultivars (Karim and Azizi) with different sensitivities to salt stress. J Plant Physiol 179:56–63

    Article  CAS  PubMed  Google Scholar 

  • Bowler C, Camp WV, Montagu MV, Inzé D (1994) Superoxide dismutase in plants. Crit Rev Plant Sci 13:199–218

    Article  CAS  Google Scholar 

  • Bridges SM, Salin ML (1981) Distribution of iron-containing superoxide dismutase in vascular plants. Plant Physiol 68:275–278

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno P, del Río LA (1992) Purification and properties of glyoxysomal cuprozinc superoxide dismutase from watermelon cotyledons (Citrullus vulgaris Schrad). Plant Physiol 98:331–6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bueno P, Varela J, Gimeénez-Gallego G, del Río LA (1995) Peroxisomal copper, zinc superoxide dismutase. characterization of the isoenzyme from watermelon cotyledons. Plant Physiol 108:1151–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clausing G, Vickers K, Kadereit JW (2000) Historical biogeography in a linear system: genetic variation of Sea Rocket (Cakile maritima) and Sea Holly (Eryngium maritimum) along European coasts. Mol Ecol 9:1823–1833

    Article  CAS  PubMed  Google Scholar 

  • Corpas FJ, Sandalio LM, del Río LA, Trelease RN (1998) Copper–zinc superoxide dismutase is a constituent enzyme of the matrix of peroxisomes in the cotyledons of oilseed plants. New Phytol 138:307–314

    Article  CAS  Google Scholar 

  • Corpas FJ, Fernández-Ocaña A, Carreras A, Valderrama R, Luque F, Esteban FJ, Rodríguez-Serrano M, Chaki M, Pedrajas JR, Sandalio LM, del Río LA, Barroso JB (2006) The expression of different superoxide dismutase forms is cell-type dependent in olive (Olea europaea L.) leaves. Plant Cell Physiol 47:984–94

    Article  CAS  PubMed  Google Scholar 

  • Debez A, Braun HP, Pich A, Taamalli W, Koyro HW, Abdelly C, Huchzermeyer B (2012) Proteomic and physiological responses of the halophyte Cakile maritima to moderate salinity at the germinative and vegetative stages. J Proteomics 75:5667–94

    Article  CAS  PubMed  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19:371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • del Río LA, Lyon DS, Olah I, Glick B, Salin ML (1983) Immunocytochemical evidence for a peroxisomal localization of manganese superoxide dismutase in leaf protoplasts from a higher plant. Planta 158:216–24

    Article  PubMed  Google Scholar 

  • del Río LA, Sandalio LM, Altomare DA, Zilinskas BA (2003) Mitochondrial and peroxisomal manganese superoxide dismutase: differential expression during leaf senescence. J Exp Bot 54:923–933

    Article  PubMed  Google Scholar 

  • Droillard MJ, Paulin A (1990) Isozymes of superoxide dismutase in mitochondria and peroxisomes isolated from petals of carnation (Dianthus caryophyllus) during senescence. Plant Physiol 94:1187–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ellouzi H, Hamed KB, Cela J, Munné-Bosch S, Abdelly C (2011) Early effects of salt stress on the physiological and oxidative status of Cakile maritima (halophyte) and Arabidopsis thaliana (glycophyte). Physiol Plant 142:128–43

    Article  CAS  PubMed  Google Scholar 

  • Ellouzi H, Ben Hamed K, Asensi-Fabado MA, Müller M, Abdelly C, Munné-Bosch S (2013) Drought and cadmium may be as effective as salinity in conferring subsequent salt stress tolerance in Cakile maritime. Planta 237:1311–1323

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Ocaña A, Chaki M, Luque F, Gómez-Rodríguez MV, Carreras A, Valderrama R, Begara-Morales JC, Hernández LE, Corpas FJ, Barroso JB (2011) Functional analysis of superoxide dismutases (SODs) in sunflower under biotic and abiotic stress conditions. identification of two new genes of mitochondrial Mn-SOD. J Plant Physiol 168:1303–8

    Article  PubMed  Google Scholar 

  • Flowers TJ (2004) Improving crop salt tolerance. J Exp Bot 55:307–319

    Article  CAS  PubMed  Google Scholar 

  • Fridovich I (1975) Superoxide dismutases. Annu Rev Biochem 44:147–159

    Article  CAS  PubMed  Google Scholar 

  • Gómez JM, Hernández JA, Jiménez A, del Río LA, Sevilla F (1999) Differential response of antioxidative enzymes of chloroplasts and mitochondria to long-term NaCl stress of pea plants. Free Radic Res 31(Suppl):S11–8

    Article  PubMed  Google Scholar 

  • Grace SC (1990) Phylogenetic distribution of superoxide dismutase supports an endosymbiotic origin for chloroplasts and mitochondria. Life Sci 47:1875–1886

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  CAS  PubMed  Google Scholar 

  • Hayakawa T, Kanematsu S, Asada K (1984) Ocurrence of CuZn-superoxide dismutase in the intrathylakoid space of spinach chloroplasts. Plant Cell Physiol 25:883–889

    CAS  Google Scholar 

  • Hernández JA, Olmos E, Corpas FJ, del Río Sevilla F (1995) Salt-induced oxidative stress in chloroplasts of pea plants. Plant Sci 105:151–167

    Article  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The salt overly sensitive (SOS) pathway: established and emerging roles. Mol Plant 6:275–286

    Article  CAS  PubMed  Google Scholar 

  • Jithesh MN, Prashanth SR, Sivaprakash KR, Parida AK (2006) Antioxidative response mechanisms in halophytes: their role in stress defence. J Genet 85:237–254

    Article  CAS  PubMed  Google Scholar 

  • Kanematsu S, Asada K (1978) Crystalline ferric superoxide dismutase from an anaerobic green sulfur bacterium. Chlorobium thiosulfatophilum. FEBS Lett 91:94–8

    Article  CAS  PubMed  Google Scholar 

  • Kanematsu S, Asada K (1979) Ferric and manganic superoxide dismutases in Euglena gracilis. Arch Biochem Biophys 195:535–45

    Article  CAS  PubMed  Google Scholar 

  • Kanematsu S, Asada K (1990) Characteristic amino acid sequences of chloroplast and cytosol isozymes of CuZn-superoxide dismutase in spinach, rice and horsetail. Plant Cell Physiol 31:99–112

    CAS  Google Scholar 

  • Kanematsu S, Asada K (1991) Chloroplast and cytosol isozymes of CuZn-superoxide dismutase: their characteristic amino acid sequences. Free Radic Res Commun 12–13(Pt 1):383–90

    Article  PubMed  Google Scholar 

  • Kitagawa Y, Tsunasawa S, Tanaka N, Katsube Y, Sakiyama F, Asada K (1986) Amino acid sequence of copper, zinc-superoxide dismutase from spinach leaves. J Biochem 99:1289–98

    CAS  PubMed  Google Scholar 

  • Kliebenstein DJ, Monde RA, Last RL (1998) Superoxide dismutase in Arabidopsis: an eclectic enzyme family with disparate regulation and protein localization. Plant Physiol 118:637–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ksouri R, Megdiche W, Debez A, Falleh H, Grignon C, Abdelly C (2007) Salinity effects on polyphenol content and antioxidant activities in leaves of the halophyte Cakile maritima. Plant Physiol Biochem 45:244–9

    Article  CAS  PubMed  Google Scholar 

  • León AM, Palma JM, Corpas FJ, Gómez M, Romero-Puertas MC, Chatterjee D, Mateos RM, del Río LA, Sandalio LM (2002) Antioxidative enzymes in cultivars of pepper plants with different sensitivity to cadmium. Plant Physiol Biochem 40:813–820

    Article  Google Scholar 

  • Lichtenthaler HK, Welburn AR (1983) Determination of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592

    Article  CAS  Google Scholar 

  • López-Huertas E, del Río LA (2014) Characterization of antioxidant enzymes and peroxisomes of olive (Olea europaea L.) fruits. J Plant Physiol 171:1463–71

    Article  PubMed  Google Scholar 

  • Manai J, Gouia H, Corpas FJ (2014a) Redox and nitric oxide homeostasis are affected in tomato (Solanum lycopersicum) roots under salinity-induced oxidative stress. J Plant Physiol 171:1028–1035

    Article  CAS  PubMed  Google Scholar 

  • Manai J, Kalai T, Gouia H, Corpas FJ (2014b) Exogenous nitric oxide (NO) ameliorates salinity-induced oxidative stress in tomato (Solanum lycopersicum) plants. J Soil Sci Plant Nutr 14:433–446

    Google Scholar 

  • Miller AF (2004) Superoxide dismutases: active sites that save, but a protein that kills. Curr Opin Chem Biol 8:162–168

    Article  CAS  PubMed  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  CAS  PubMed  Google Scholar 

  • Ogawa K, Kanematsu S, Asada K (1997) Generation of superoxide anion and localization of CuZn-superoxide dismutase in the vascular tissue of spinach hypocotyls: their association with lignification. Plant Cell Physiol 38:1118–26

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, Pastori GM, Bueno P, Distefano S, del Río LA (1997) Purification and properties of cytosolic copper, zinc superoxide dismutase from watermelon (Citrullus vulgaris Schrad.) cotyledons. Free Radic Res 26:83–91

    Article  CAS  PubMed  Google Scholar 

  • Palma JM, López-Huertas E, Corpas FJ, Sandalio LM, Gómez M, del Río LA (1998) Peroxisomal manganese superoxide dismutase: purification and properties of the isozyme from pea leaves. Physiol Plant 104:720–726

    Article  CAS  Google Scholar 

  • Pilon M, Ravet K, Tapken W (2011) The biogenesis and physiological function of chloroplast superoxide dismutases. Biochim Biophys Acta 1807:989–998

    Article  CAS  PubMed  Google Scholar 

  • Rodríguez-Serrano M, Romero-Puertas MC, Pastori GM, Corpas FJ, Sandalio LM, del Río LA, Palma JM (2007) Peroxisomal membrane manganese superoxide dismutase: characterization of the isozyme from watermelon (Citrullus lanatus Schrad.) cotyledons. J Exp Bot 58:2417–27

    Article  PubMed  Google Scholar 

  • Salin ML (1988) Toxic oxygen species and protective systems of the chloroplast. Physiol Plant 72:681–689

    Article  CAS  Google Scholar 

  • Sandalio LM, López-Huertas E, Bueno P, del Río LA (1997) Immunocytochemical localization of copper, zinc superoxide dismutase in peroxisomes from watermelon (Citrullus vulgaris Schrad.) cotyledons. Free Radic Res 26:187–194

    Article  CAS  PubMed  Google Scholar 

  • Sevilla F, del Río LA, Hellín E (1984) Superoxide dismutases from a Citrus plant: presence of two iron-containing isoenzymes in leaves of lemon trees (Citrus limonum L.). J Plant Physiol 116:381–387

    Article  CAS  PubMed  Google Scholar 

  • Shavrukov Y (2013) Salt stress or salt shock: which genes are we studying? J Exp Bot 64:119–127

    Article  CAS  PubMed  Google Scholar 

  • Signorelli S, Corpas FJ, Borsani O, Barroso JB, Monza J (2013) Water stress induces a differential and spatially distributed nitro-oxidative stress response in roots and leaves of Lotus japonicus. Plant Sci 201-202:137–46

  • Smith MW, Doolittle RF (1992) A comparison of evolutionary rates of the two major kinds of superoxide dismutase. J Mol Evol 34:175–184

  • Tabares LC, Bittel C, Carrillo N, Bortolotti A, Cortez N (2003) The single superoxide dismutase of Rhodobacter capsulatus is a cambialistic, manganese-containing enzyme. J Bacteriol 185:3223–3227

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valderrama R, Corpas FJ, Carreras A, Gómez-Rodríguez MV, Chaki M, Pedrajas JR, Fernández-Ocaña A, del Río LA, Barroso JB (2006) The dehydrogenase-mediated recycling of NADPH is a key antioxidant system against salt-induced oxidative stress in olive plants. Plant Cell Environ 29:1449–59

    Article  CAS  PubMed  Google Scholar 

  • Vargas WA, Martín JM, Rech GE, Rivera LP, Benito EP, Díaz-Mínguez JM, Thon MR, Sukno SA (2012) Plant defense mechanisms are activated during biotrophic and necrotrophic development of Colletotricum graminicola in maize. Plant Physiol 158:1342–1358

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamakura F, Kobayashi K, Ue H, Konno M (1995) The pH-dependent changes of the enzymic activity and spectroscopic properties of iron-substituted manganese superoxide dismutase. A study on the metal-specific activity of Mn-containing superoxide dismutase. Eur J Biochem 227:700–706

    Article  CAS  PubMed  Google Scholar 

  • Yousfi S, Sehli WM, Mahmoudi H, Abdelly C, Gharsalli M (2007) Effect of salt on physiological responses of barley to iron deficiency. Plant Physiol Biochem 45:309–314

    Article  CAS  PubMed  Google Scholar 

  • Zafra A, Jiménez-Quesada MJ, Traverso JA, Corpas FJ, Rodríguez-García MI, Alché JD (2012) Peroxisomal localization of CuZn superoxide dismutase in the male reproductive tissues of the olive tree. Microsc Microanal 18:32–34

    Article  Google Scholar 

Download references

Acknowledgments

H. Houmani acknowledges a short-term scholarship from Tunisian government. Work in the FJ Corpas laboratory is supported by ERDF-cofinanced grant from the Ministry of Science and Innovation (BIO2012-33904) and Junta de Andalucía (group BIO192). The valuable technical help of Mr. Carmelo Ruíz-Torres is also appreciated.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Francisco J. Corpas.

Additional information

Handling Editor: Néstor Carrillo

This manuscript is dedicated to the memory of Prof. Emeritus Kozi Asada, Kyoto University (Japan) for his large contribution in the research of plant superoxide dismutase who passed away in December 15, 2013.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(PPT 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houmani, H., Rodríguez-Ruiz, M., Palma, J.M. et al. Modulation of superoxide dismutase (SOD) isozymes by organ development and high long-term salinity in the halophyte Cakile maritima . Protoplasma 253, 885–894 (2016). https://doi.org/10.1007/s00709-015-0850-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00709-015-0850-1

Keywords

Navigation