Skip to main content

Electrical Signaling and Its Functions Under Conditions of Abiotic Stress: A Review of Methodological Approaches and Physiological Implications

  • Protocol
  • First Online:
Plant Abiotic Stress Signaling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2642))

Abstract

In contrast to chemical messengers, electrical signals such as action potentials and variation potentials can transmit information much faster over long distances. Electrical signals can be triggered by various abiotic stress factors and are propagated via plasmodesmata over short distances and within the phloem over long distances. Thus, in addition to assimilate transport from sources to sinks, the phloem serves as a communication highway for various types of information. Key factors for systemic signaling in the phloem are peptides, RNAs, hormones, and electrical signals. In recent years, there has been increasing evidence that rapid communication by means of electrical signals is essential for various plant physiological processes. Thus, this chapter focuses on electrical signaling and various associated physiological effects, such as regulation of leaf movements, assimilate transport, photosynthesis, and gas exchange, as well as plant water status.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Umrath K (1930) Untersuchungen über Plasma und Plasmaströmungen an Characeen. IV. Potentialmessungen an Nitella macronata mit besonderer Berücksichtigung der Erregungserscheinungen. Protoplasma 9:576–597

    Article  Google Scholar 

  2. Nastuk WL, Hodgkin AL (1950) The electrical activity of single muscle fibers. J Cell Comp Physiol 35:39–73

    Article  CAS  Google Scholar 

  3. Tasaki I (1952) Properties of myelinated fibers in frog sciatic nerve and in spinal chord as examined with microelectrodes. Jpn J Physiol 3:73–94

    Article  CAS  PubMed  Google Scholar 

  4. Sibaoka T (1966) Action potentials in plant organs. Symp Soc Exp Bot 20:49–73

    CAS  Google Scholar 

  5. Sibaoka T (1969) Physiology of rapid movements in higher plants. Ann Rev Plant Physiol 20:165–184

    Article  CAS  Google Scholar 

  6. Schroeder JI, Hedrich R, Fernandez JM (1984) Potassium-selective single channels in guard cell protoplasts of Vicia faba. Nature 312:361–362

    Article  CAS  Google Scholar 

  7. Albert N (2012) Elektrophysiologische Messungen im Parenchym von Holz und Wurzel der Pappel. Bachelor Thesis, Universität Hamburg

    Google Scholar 

  8. Fromm J, Eschrich W (1988) Transport processes in stimulated and non-stimulated leaves of Mimosa pudica. II. Energesis and transmission of seismic stimulations. Trees 2:18–24

    Article  Google Scholar 

  9. Fromm J, Bauer T (1994) Action potentials in maize sieve tubes change phloem translocation. J Exp Bot 45:463–469

    Article  Google Scholar 

  10. Wright JP, Fisher DB (1981) Measurement of the sieve tube membrane potential. Plant Physiol 67:845–848

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Zhao D-J, Chen Y, Wang Z-Y, Xue L, Mao T-L, Liu Y-M, Wang Z-Y, Huang L (2015) High-resolution non-contact measurement of the electrical activity of plants in situ using optical recording. Sci Rep 5:13425

    Article  PubMed  PubMed Central  Google Scholar 

  12. Von der Linde D, Glass AM, Rogers KF (1975) High-sensitivity optical recording in KTN by two-photon absorption. Appl Phys Lett 26:22–24

    Article  Google Scholar 

  13. Lang D, Sulkin M, Lou Q, Efimov IR (2011) Optical mapping of action potentials and calcium transients in the mouse heart. J Vis Exp 55:3257

    Google Scholar 

  14. Momose-Sato Y, Nakamori T, Sato K (2011) Functional development of the vagal and glossopharyngeal nerve-related nuclei in the embryonic rat brainstem: optical mapping with a voltage-sensitive dye. Neuroscience 192:781–792

    Article  CAS  PubMed  Google Scholar 

  15. Di Diego JM, Sicouri S, Myles RC, Burton FL, Smith GL, Antzelevich C (2012) Optical and electrical recordings from isolated coronary-perfused ventricular wedge preparations. J Mol Cell Cardiol 54:53–64

    Article  PubMed  PubMed Central  Google Scholar 

  16. Aseyev N, Roshchin M, Ierusalimsky VN, Balaban PN, Nikitin ES (2013) Biolistic delivery of voltage-sensitive dyes for fast recording of membrane potential changes in individual neurons in rat brain slices. J Neurosci Meth 212:17–27

    Article  Google Scholar 

  17. Spanswick R (1972) Electrical coupling between cells of higher plants: a direct demonstration of intercellular communication. Planta 102:215–227

    Article  CAS  PubMed  Google Scholar 

  18. Taylor AR (2009) A fast Na+/Ca2+-based action potential in an marine diatom. PLoS One 4:e4966

    Article  PubMed  PubMed Central  Google Scholar 

  19. Verret F, Wheeler G, Taylor AR, Farnham G, Brownlee C (2010) Calcium channels in photosynthetic eukaryotes: implications for evolution of calcium-based signaling. New Phytol 187:23–43

    Article  CAS  PubMed  Google Scholar 

  20. Wayne R (1994) The excitability of plant cells with a special emphasis on characean internodal cells. Bot Rev 60:265–367

    Article  CAS  PubMed  Google Scholar 

  21. Meyer S, Mumm P, Imes D, Endler A, Weder B, Al-Rasheid KAS, Geiger D, Marten I, Martinoia E, Hedrich R (2010) AtALMT12 represents an R-type anion channel required for stomatal movement in Arabidopsis guard cells. Plant J 63:1054–1062

    Article  CAS  PubMed  Google Scholar 

  22. Dreyer I, Gomez-Porras JL, Riano-Pachón DM, Hedrich R, Geiger D (2012) Molecular evolution of slow and quick anion channels (SLACs and QUACs/ALMTs). Front Plant Sci 3:263

    Article  PubMed  PubMed Central  Google Scholar 

  23. Imes D, Mumm P, Böhm J, Al-Rasheid KAS, Marten I, Geiger D, Hedrich R (2013) Open stomata 1 (OST 1) kinase controls R-type anion channel QUAC1 in Arabidopsis guard cells. Plant J 74:372–382

    Article  CAS  PubMed  Google Scholar 

  24. Mumm P, Imes D, Martinois E, Al-Rasheid KAS, Geiger D, Marten I, Hedrich R (2013) C-terminus mediated voltage gating of Arabidopsis guard cell anion channel QUAC1. Mol Plant 6:1550–1563

    Article  CAS  PubMed  Google Scholar 

  25. Felle H, Zimmermann MR (2007) Systemic signaling in barley through action potentials. Planta 226:203–214

    Article  CAS  PubMed  Google Scholar 

  26. Hodgkin AI, Huxley AF (1952) A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol 117:500–544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Sharma T, Dreyer I, Riedelsberger J (2013) The role of K+ channels in uptake and redistribution of potassium in the model plant Arabidopsis thaliana. Front Plant Sci 4:224

    Article  PubMed  PubMed Central  Google Scholar 

  28. Ache P, Becker D, Ivashikina N, Dietrich P, Roelfsema MR, Hedrich R (2000) GORK, a delayed outward rectifier expressed in guard cells of Arabidopsis thaliana, is a K+-selective, K+-sensing ion channel. FEBS Lett 486:93–98

    Article  CAS  PubMed  Google Scholar 

  29. Van Bel AJE, Furch ACU, Will T, Buxa SV, Musetti R, Hafke JB (2014) Spread the news: systemic dissemination and local impact of Ca2+ signals along the phloem pathway. J Exp Bot 65:1761–1787

    Article  PubMed  Google Scholar 

  30. Trebacz K, Dziubinska H, Krol E (2006) Electrical signals in long-distance communication in plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants. Springer, Berlin, Heidelberg, New York, pp 277–290

    Chapter  Google Scholar 

  31. Fromm J, Meyer AJ, Weisenseel MH (1997) Growth, membrane potential and endogenous ion currents of willow (Salix viminalis) roots are all affected by abscisic acid and spermine. Physiol Plant 99:529–537

    Article  CAS  Google Scholar 

  32. Grams TEE, Koziolek C, Lautner S, Matyssek R, Fromm J (2007) Distinct roles of electric and hydraulic signals on the reaction of leaf gas exchange upon re-irrigation in Zea mays. Plant Cell Environ 30:79–84

    Article  PubMed  Google Scholar 

  33. Gallé A, Lautner S, Flexas J, Fromm J (2015) Environmental stimuli and physiological responses: the current view on electrical signalling. Environ Exp Bot 114:15–21

    Article  Google Scholar 

  34. Stahlberg R, Cleland RE, Van Volkenburgh EV (2006) Slow wave potentials – a propagating electrical signal unique to higher plants. In: Baluska F, Mancuso S, Volkmann D (eds) Communication in plants: neuronal aspects of plant life. Springer, Berlin, Heidelberg, pp 291–308

    Chapter  Google Scholar 

  35. Julien JL, Frachisse JM (1992) Involvement of the proton pump and proton conductance change in the wave of depolarization induced by wounding in Bidens pilosa. Can J Bot 70:1451–1458

    Article  CAS  Google Scholar 

  36. Stahlberg R, Cosgrove DJ (1996) Induction and ionic basis of slow wave potentials in seedlings of Pisum sativum L. Planta 200:416–425

    Article  CAS  PubMed  Google Scholar 

  37. Kumari A, Chételat A, Nguyen CT, Farmer EE (2019) Arabidopsis H+-ATPase AHA1 controls slow wave potential duration and wound-response jasmonate pathway activation. Proc Natl Acad Sci U S A 116:20226–20321

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Mousavi SAR, Chauvin A, Pascaud F, Kellenberger S, Farmer EE (2013) GLUTAMATE RECEPTOR-LIKE genes mediate leaf-to-leaf wound signalling. Nature 500:422–426

    Article  CAS  PubMed  Google Scholar 

  39. Nguyen CT, Kurenda A, Stolz S, Chételat A, Farmer EE (2018) Identification of cell populations necessary for leaf-to-leaf electrical signaling in a wounded plant. Proc Natl Acad Sci U S A 115:10178–10183

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Salvador-Recatalà V, Tjallingii WF, Farmer EE (2014) Real-time, in vivo intracellular recordings of caterpillar-induced depolarization waves in sieve elements using aphid electrodes. New Phytol 203:674–684

    Article  PubMed  Google Scholar 

  41. Volkov AG, Adesina T, Markin VS, Jovanov E (2008) Kinetics and mechanism of Dionaea muscipula trap closing. Plant Physiol 146:694–702

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Scherzer S, Shabala L, Hedrich B, Fromm J, Bauer H, Munz E, Jakob P, Al-Rascheid KAS, Kreuzer I, Becker D, Eiblmeier M, Rennenberg H, Shabala S, Bennet M, Neher E, Hedrich R (2017) Insect haptoelectrical stimulation of Venus flytrap triggers exocytosis in gland cells. Proc Natl Acad Sci U S A 114(18):4822–4827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Pickard WF, Minchin PEH, Troughton JH (1978) Transient inhibition of translocation in Ipomoea alba L. by small temperature reductions. Aust J Plant Physiol 5:127–130

    Google Scholar 

  44. Minchin PEH, Thorpe MR (1983) A rate of cooling response in phloem translocation. J Exp Bot 34:529–536

    Article  Google Scholar 

  45. Fromm J, Hajirezaei M-R, Becker VK, Lautner S (2013) Electrical signaling along the phloem and its physiological responses in the maize leaf. Front Plant Sci 4:239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Furch ACU, Hafke JB, Schulz A, van Bel AJE (2007) Ca2+-mediated remote control of reversible sieve tube occlusion in Vicia faba. J Exp Bot 58:2827–2838

    Article  CAS  PubMed  Google Scholar 

  47. Furch ACU, Zimmermann MR, Will T, Hafke JB, van Bel AJE (2010) Remote-controlled stop of mass flow by biphasic occlusion in Cucurbita maxima. J Exp Bot 61:3697–3708

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Knoblauch M, Peters WS, Ehlers K, van Bel AJE (2001) Reversible calcium-regulated stop-cocks in legume sieve tubes. Plant Cell 13:1221–1230

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Kikuyama M, Tazawa M (1983) Transient increase of intracellular Ca2+ during excitation of tonoplast-free Chara cells. Protoplasma 117:62–67

    Article  CAS  Google Scholar 

  50. Beilby MJ (1984) Calcium and plant action potentials. Plant Cell Environ 7:415–421

    Article  CAS  Google Scholar 

  51. Van Bel AJE, Knoblauch M, Furch ACU, Hafke JB (2011) (Questions)n on phloem biology. 1. Electropotential waves, Ca2+ fluxes and cellular cascades along the propagation pathway. Plant Sci 181:210–218

    Article  PubMed  Google Scholar 

  52. Davies E, Zawadzki T, Witters D (1991) Electrical activity and signal transmission in plants: how do plants know? In: Penel C, Greppin H (eds) Plant signalling, plasma membrane and change of state. University of Geneva, pp 119–137

    Google Scholar 

  53. Fromm J, Eschrich W (1993) Electric signals released from roots of willow (Salix viminalis L.) change transpiration and photosynthesis. J Plant Physiol 141:673–680

    Article  CAS  Google Scholar 

  54. Koziolek C, Grams TEE, Schreiber U, Matyssek R, Fromm J (2004) Transient knockout of photosynthesis mediated by electrical signals. New Phytol 161:715–722

    Article  CAS  PubMed  Google Scholar 

  55. Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Grams TEE, Lautner S, Felle HH, Matyssek R, Fromm J (2009) Heat-induced electrical signals affect cytoplasmic and apoplastic pH as well as photosynthesis during propagation through the maize leaf. Plant Cell Environ 32:319–326

    Article  CAS  PubMed  Google Scholar 

  57. Gallé A, Lautner S, Flexas J, Ribas-Carbo M, Hanson D, Roesgen J, Fromm J (2013) Photosynthetic responses of soybean (Glycine max L.) to heat-induced electrical signalling are predominantly governed by modifications of mesophyll conductance for CO2. Plant Cell Environ 36:542–552

    Article  PubMed  Google Scholar 

  58. Herde O, Pena-Cortés H, Fuss H, Willmitzer L, Fisahn J (1999) Effects of mechanical wounding, current application and heat treatment on chlorophyll fluorescence and pigment composition in tomato plants. Physiol Plant 105:179–184

    Article  CAS  Google Scholar 

  59. Davies E (2004) New functions for electrical signals in plants. New Phytol 161:607–610

    Article  PubMed  Google Scholar 

  60. Sukhov V (2016) Electrical signals as mechanism of photosynthesis regulation in plants. Photosynth Res 130:373–387

    Article  CAS  PubMed  Google Scholar 

  61. Schurr U, Gollan T (1990) Composition of xylem sap of plants experiencing root water stress: a descriptive study. In: Davies WJ, Jeffcoat B (eds) Importance of root to shoot communication in the response to environmental stress. British Society for Plant Growth Regulation, Bristol, pp 201–214

    Google Scholar 

  62. Chazen O, Neumann PM (1994) Hydraulic signals from the root and rapid cell-wall hardening in growing maize (Zea mays L.) leaves are primary responses to polyethylene glycol-induced water deficits. Plant Physiol 104:1385–1392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Christmann A, Grill E, Huang J (2013) Hydraulic signals in long-distance signaling. Curr Opin Plant Biol 16:293–300

    Article  CAS  PubMed  Google Scholar 

  64. Fromm J, Fei H (1998) Electrical signaling and gas exchange in maize plants of drying soil. Plant Sci 132:203–213

    Article  CAS  Google Scholar 

  65. Gil PM, Gurovich I, Schaffer B, Alcayaga J, Rey S, Iturriaga R (2008) Root to leaf electrical signaling in avocado in response to light and soil water content. J Plant Physiol 165:1070–1078

    Article  CAS  PubMed  Google Scholar 

  66. Vuralhan-Eckert J, Lautner S, Fromm J (2018) Effect of simultaneously induced environmental stimuli on electrical signalling and gas exchange in maize plants. J Plant Physiol 223:32–36

    Article  CAS  PubMed  Google Scholar 

  67. Gilroy S, Suzuki N, Miller G, Choi W-G, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19(10):623–630

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The skillful technical work of Mrs. Katharina Erdt is greatly appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jörg Fromm .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Fromm, J., Lautner, S. (2023). Electrical Signaling and Its Functions Under Conditions of Abiotic Stress: A Review of Methodological Approaches and Physiological Implications. In: Couée, I. (eds) Plant Abiotic Stress Signaling. Methods in Molecular Biology, vol 2642. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3044-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3044-0_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3043-3

  • Online ISBN: 978-1-0716-3044-0

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics