Skip to main content

Genome-Wide Association Studies (GWAS)

  • Protocol
  • First Online:
Plant Genotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2638))

Abstract

Most of the breeding targets are quantitative traits. In exploring the quantitative trait locus (QTL) system of a trait, linkage mapping was established using sparse polymerase chain reaction (PCR) markers. With the genome-wide sequencing technology advanced, genome-wide association study (GWAS) was developed for natural (germplasm) populations using dense genomic markers, which facilitates the identification of the complete QTL system with their multiple alleles on genomic locations. GWAS makes use of the linkage disequilibrium (LD) due to historical saturate recombination and high-density genomic markers to detect QTLs through statistical test for the association between molecular markers and phenotypes. However, due to inbreeding and mixture of source populations, the germplasm population often has complex and unknown structure, which leads to false positives/negatives in GWAS. Various GWAS methods have been proposed to reduce false positives/negatives, including those of the general linear model and the mixed linear model, which focused mainly on finding a handful of major QTLs under single-locus model for major gene cloning and could not detect directly the multiple alleles using bi-allelic single-nucleotide polymorphism (SNP) marker. As a relatively thorough detection of QTLs with their multiple alleles is required for germplasm population, the restricted two-stage multi-locus multi-allele GWAS (RTM-GWAS) procedure was proposed for identifying the QTL system with varying multiple alleles. From the RTM-GWAS results, a QTL-allele matrix is constructed as a compact form of the population genetic constitution, which can be further used for crop genetic and breeding studies, including major gene mining, population evolution, and breeding by genetic design.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Wang J, Crossa J, Gai J (2020) Quantitative genetic studies with applications in plant breeding in the omics era. Crop J 8:683–687. https://doi.org/10.1016/j.cj.2020.09.001

    Article  Google Scholar 

  2. Price AL, Zaitlen NA, Reich D, Patterson N (2010) New approaches to population stratification in genome-wide association studies. Nat Rev Genet 11:459–463. https://doi.org/10.1038/nrg2813

    Article  CAS  Google Scholar 

  3. Pritchard JK, Stephens M, Rosenberg NA, Donnelly P (2000) Association mapping in structured populations. Am J Hum Genet 67:170–181. https://doi.org/10.1086/302959

    Article  CAS  Google Scholar 

  4. Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D (2006) Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet 38:904–909. https://doi.org/10.1038/ng1847

    Article  CAS  Google Scholar 

  5. Yu J, Pressoir G, Briggs WH, Vroh Bi I, Yamasaki M, Doebley JF et al (2005) A unified mixed-model method for association mapping that accounts for multiple levels of relatedness. Nat Genet 38:203–208. https://doi.org/10.1038/ng1702

    Article  CAS  Google Scholar 

  6. Pritchard JK, Stephens M, Donnelly P (2000) Inference of population structure using multilocus genotype data. Genetics 155:945–959. https://doi.org/10.1093/genetics/155.2.945

    Article  CAS  Google Scholar 

  7. Sul JH, Martin LS, Eskin E (2018) Population structure in genetic studies: confounding factors and mixed models. PLoS Genet 14:e1007309. https://doi.org/10.1371/journal.pgen.1007309

    Article  CAS  Google Scholar 

  8. He J, Meng S, Zhao T, Xing G, Yang S, Li Y et al (2017) An innovative procedure of genome-wide association analysis fits studies on germplasm population and plant breeding. Theor Appl Genet 130:2327–2343. https://doi.org/10.1007/s00122-017-2962-9

    Article  CAS  Google Scholar 

  9. Segura V, Vilhjálmsson BJ, Platt A, Korte A, Seren Ü, Long Q et al (2012) An efficient multi-locus mixed-model approach for genome-wide association studies in structured populations. Nat Genet 44:825–830. https://doi.org/10.1038/ng.2314

    Article  CAS  Google Scholar 

  10. Rakitsch B, Lippert C, Stegle O, Borgwardt K (2013) A Lasso multi-marker mixed model for association mapping with population structure correction. Bioinformatics 29:206–214. https://doi.org/10.1093/bioinformatics/bts669

    Article  CAS  Google Scholar 

  11. Gai J, Chen L, Zhang Y, Zhao T, Xing G, Xing H (2012) Genome-wide genetic dissection of germplasm resources and implications for breeding by design in soybean. Breed Sci 61:495–510. https://doi.org/10.1270/jsbbs.61.495

    Article  CAS  Google Scholar 

  12. He J, Gai J (2020) QTL-allele matrix detected from RTM-GWAS is a powerful tool for studies in genetics, evolution, and breeding by design of crops. J Integr Agric 19:1407–1410. https://doi.org/10.1016/S2095-3119(20)63199

    Article  Google Scholar 

  13. Weir BS (2008) Linkage disequilibrium and association mapping. Annu Rev Genomics Hum Genet 9:129–142. https://doi.org/10.1146/annurev.genom.9.081307.164347

    Article  CAS  Google Scholar 

  14. Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635. https://doi.org/10.1093/bioinformatics/btm308

    Article  CAS  Google Scholar 

  15. Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D et al (2007) PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet 81:559–575. https://doi.org/10.1086/519795

    Article  CAS  Google Scholar 

  16. Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee JJ (2015) Second-generation PLINK: rising to the challenge of larger and richer datasets. GigaSci 4:7. https://doi.org/10.1186/s13742-015-0047-8

    Article  CAS  Google Scholar 

  17. Schmutz J, Cannon SB, Schlueter J, Ma J, Mitros T, Nelson W et al (2010) Genome sequence of the paleopolyploid soybean. Nature 463(7278):178–183. https://doi.org/10.1038/nature08670

    Article  CAS  Google Scholar 

  18. Saxena R, Voight BF, Lyssenko V, Burtt NP, de Bakker PIW, Chen H et al (2007) Genome-wide association analysis identifies loci for type 2 diabetes and triglyceride levels. Science 316(5829):1331–1336. https://doi.org/10.1126/science.1142358

    Article  CAS  Google Scholar 

  19. Devlin B, Roeder K (1999) Genomic control for association studies. Biometrics 55:997–1004. https://doi.org/10.1111/j.0006-341X.1999.00997.x

    Article  CAS  Google Scholar 

  20. Lippert C, Listgarten J, Liu Y, Kadie CM, Davidson RI, Heckerman D (2011) FaST linear mixed models for genome-wide association studies. Nat Methods 8:833–835. https://doi.org/10.1038/nmeth.1681

    Article  CAS  Google Scholar 

  21. Zhou X, Stephens M (2012) Genome-wide efficient mixed-model analysis for association studies. Nat Genet 44:821–824. https://doi.org/10.1038/ng.2310

    Article  CAS  Google Scholar 

  22. Jiang L, Zheng Z, Qi T, Kemper KE, Wray NR, Visscher PM et al (2019) A resource-efficient tool for mixed model association analysis of large-scale data. Nat Genet 51:1749–1755. https://doi.org/10.1038/s41588-019-0530-8

    Article  CAS  Google Scholar 

  23. Kang HM, Zaitlen NA, Wade CM, Kirby A, Heckerman D, Daly MJ et al (2008) Efficient control of population structure in model organism association mapping. Genetics 178:1709–1723. https://doi.org/10.1534/genetics.107.080101

    Article  Google Scholar 

  24. Yang J, Zaitlen NA, Goddard ME, Visscher PM, Price AL (2014) Advantages and pitfalls in the application of mixed-model association methods. Nat Genet 46:100–106. https://doi.org/10.1038/ng.2876

    Article  CAS  Google Scholar 

  25. Gabriel SB, Schaffner SF, Nguyen H, Moore JM, Roy J, Blumenstiel B et al (2002) The structure of haplotype blocks in the human genome. Science 296(5576):2225–2229. https://doi.org/10.1126/science.1069424

    Article  CAS  Google Scholar 

  26. Zhang Y, He J, Wang Y, Xing G, Zhao J, Li Y et al (2015) Establishment of a 100-seed weight quantitative trait locus–allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. J Exp Bot 66:6311–6325. https://doi.org/10.1093/jxb/erv342

    Article  CAS  Google Scholar 

  27. Meng S, He J, Zhao T, Xing G, Li Y, Yang S et al (2016) Detecting the QTL-allele system of seed isoflavone content in Chinese soybean landrace population for optimal cross design and gene system exploration. Theor Appl Genet 129:1557–1576. https://doi.org/10.1007/s00122-016-2724-0

    Article  CAS  Google Scholar 

  28. Zhang Y, He J, Wang H, Meng S, Xing G, Li Y et al (2018) Detecting the QTL-allele system of seed oil traits using multi-locus genome-wide association analysis for population characterization and optimal cross prediction in soybean. Front Plant Sci 9:1793. https://doi.org/10.3389/fpls.2018.01793

    Article  Google Scholar 

  29. Zhang Y, He J, Meng S, Liu M, Xing G, Li Y et al (2018) Identifying QTL-allele system of seed protein content in Chinese soybean landraces for population differentiation studies and optimal cross predictions. Euphytica 214:157. https://doi.org/10.1007/s10681-018-2235-y

    Article  Google Scholar 

  30. Li S, Xu H, Yang J, Zhao T (2019) Dissecting the genetic architecture of seed protein and oil content in soybean from the Yangtze and Huaihe river valleys using multi-locus genome-wide association studies. Int J Mol Sci 20:3041. https://doi.org/10.3390/ijms20123041

    Article  CAS  Google Scholar 

  31. Fu M, Wang Y, Ren H, Du W, Yang X, Wang D et al (2020) Exploring the QTL–allele constitution of main stem node number and its differentiation among maturity groups in a Northeast China soybean population. Crop Sci 60:1223–1238. https://doi.org/10.1002/csc2.20024

    Article  CAS  Google Scholar 

  32. Wang W, Zhou B, He J, Zhao J, Liu C, Chen X et al (2020) Comprehensive identification of drought tolerance QTL-allele and candidate gene systems in Chinese cultivated soybean population. Int J Mol Sci 21:4830. https://doi.org/10.3390/ijms21144830

    Article  CAS  Google Scholar 

  33. Wang L, Liu F, Hao X, Wang W, Xing G, Luo J et al (2021) Identification of the QTL-allele system underlying two high-throughput physiological traits in the Chinese soybean germplasm population. Front Genet 12:600444. https://doi.org/10.3389/fgene.2021.600444

    Article  CAS  Google Scholar 

  34. Fahim AM, Liu F, He J, Wang W, Xing G, Gai J (2021) Evolutionary QTL-allele changes in main stem node number among geographic and seasonal subpopulations of Chinese cultivated soybeans. Mol Genet Genomics 296:313–330. https://doi.org/10.1007/s00438-020-01748-9

    Article  CAS  Google Scholar 

  35. Su J, Wang C, Ma Q, Zhang A, Shi C, Liu J et al (2020) An RTM-GWAS procedure reveals the QTL alleles and candidate genes for three yield-related traits in upland cotton. BMC Plant Biol 20:416. https://doi.org/10.1186/s12870-020-02613-y

    Article  CAS  Google Scholar 

  36. Wang C, Ma Q, Xie X, Zhang X, Yang D, Su J et al (2022) Identification of favorable haplotypes/alleles and candidate genes for three plant architecture-related traits via a restricted two-stage multilocus genome-wide association study in upland cotton. Ind Crop Prod 177:114458. https://doi.org/10.1016/j.indcrop.2021.114458

    Article  CAS  Google Scholar 

  37. Kong W, Zhang C, Zhang S, Qiang Y, Zhang Y, Zhong H et al (2021) Uncovering the novel QTLs and candidate genes of salt tolerance in rice with linkage mapping, RTM-GWAS, and RNA-seq. Rice 14:93. https://doi.org/10.1186/s12284-021-00535-3

    Article  CAS  Google Scholar 

  38. Chidzanga C, Fleury D, Baumann U, Mullan D, Watanabe S, Kalambettu P et al (2021) Development of an Australian bread wheat nested association mapping population, a new genetic diversity resource for breeding under dry and hot climates. Int J Mol Sci 22:4348. https://doi.org/10.3390/ijms22094348

    Article  CAS  Google Scholar 

  39. Pan L, He J, Zhao T, Xing G, Wang Y, Yu D et al (2018) Efficient QTL detection of flowering date in a soybean RIL population using the novel restricted two-stage multi-locus GWAS procedure. Theor Appl Genet 131:2581–2599. https://doi.org/10.1007/s00122-018-3174-7

    Article  CAS  Google Scholar 

  40. Liu F, He J, Wang W, Xing G, Gai J (2020) Bi-phenotypic trait may be conferred by multiple alleles in a germplasm population. Front Genet 11:559. https://doi.org/10.3389/fgene.2020.00559

    Article  Google Scholar 

  41. Fahim AM, Pan L, Li C, He J, Xing G, Wang W et al (2021) QTL-allele system of main stem node number in recombinant inbred lines of soybean (Glycine max) using association versus linkage mapping. Plant Breed 140:870–883. https://doi.org/10.1111/pbr.12956

    Article  CAS  Google Scholar 

  42. Li S, Cao Y, He J, Zhao T, Gai J (2017) Detecting the QTL-allele system conferring flowering date in a nested association mapping population of soybean using a novel procedure. Theor Appl Genet 130:2297–2314. https://doi.org/10.1007/s00122-017-2960-y

    Article  CAS  Google Scholar 

  43. Khan MA, Tong F, Wang W, He J, Zhao T, Gai J (2018) Analysis of QTL–allele system conferring drought tolerance at seedling stage in a nested association mapping population of soybean [Glycine max (L.) Merr.] using a novel GWAS procedure. Planta 248:947–962. https://doi.org/10.1007/s00425-019-03143-0

    Article  CAS  Google Scholar 

  44. Khan MA, Tong F, Wang W, He J, Zhao T, Gai J (2019) Using the RTM-GWAS procedure to detect the drought tolerance QTL-allele system at the seedling stage under sand culture in a half-sib population of soybean [Glycine max (L.) Merr.]. Can J Plant Sci 99:801–814. https://doi.org/10.1139/cjps-2018-0309

    Article  CAS  Google Scholar 

  45. Khan MA, Tong F, Wang W, He J, Zhao T, Gai J (2020) Molecular characterization of QTL-allele system for drought tolerance at seedling stage and optimal genotype design using multi-locus multi-allele genome-wide association analysis in a half-sib population of soybean (Glycine max (L.) Merr.). Plant Genet Res Crop Evol 18:295–306. https://doi.org/10.1017/S1479262120000313

    Article  CAS  Google Scholar 

  46. Ali MJ, Xing G, He J, Zhao T, Gai J (2020) Detecting the QTL-allele system controlling seed-flooding tolerance in a nested association mapping population of soybean. Crop J 8:781–792. https://doi.org/10.1016/j.cj.2020.06.008

    Article  Google Scholar 

  47. Liu X, He J, Wang Y, Xing G, Li Y, Yang S et al (2020) Geographic differentiation and phylogeographic relationships among world soybean populations. Crop J 8:260–272. https://doi.org/10.1016/j.cj.2019.09.010

    Article  Google Scholar 

  48. Liu F, He J, Wang W, Xing G, Zhao J, Li Y et al (2021) Genetic dynamics of flowering date evolved from later to earlier in annual wild and cultivated soybean in China. Crop Sci 61:2336–2354. https://doi.org/10.1002/csc2.20462

    Article  CAS  Google Scholar 

  49. Liu X, Li C, Cao J, Zhang X, Wang C, He J et al (2021) Growth period QTL-allele constitution of global soybeans and its differential evolution changes in geographic adaptation versus maturity group extension. Plant J 108:1624–1643. https://doi.org/10.1111/tpj.15531

    Article  CAS  Google Scholar 

  50. Fu M, Wang Y, Ren H, Du W, Wang D, Bao R et al (2020) Genetic dynamics of earlier maturity group emergence in south-to-north extension of Northeast China soybeans. Theor Appl Genet 133:1839–1857. https://doi.org/10.1007/s00122-020-03558-4

    Article  CAS  Google Scholar 

  51. Feng W, Fu L, Fu M, Sang Z, Wang Y, Wang L et al (2022) Transgressive potential prediction and optimal cross design of seed protein content in the northeast China soybean population based on full exploration of the QTL-allele system. Front Plant Sci 13:896549. https://doi.org/10.3389/fpls.2022.896549

    Article  Google Scholar 

Download references

Acknowledgments

This work was financially supported through the grant from the National Key Research and Development Program of China (2021YFF1001204).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junyi Gai .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

He, J., Gai, J. (2023). Genome-Wide Association Studies (GWAS). In: Shavrukov, Y. (eds) Plant Genotyping. Methods in Molecular Biology, vol 2638. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3024-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3024-2_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3023-5

  • Online ISBN: 978-1-0716-3024-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics