Skip to main content

Whole Genome Wide SSR Markers Identification Based on ddRADseq Data

  • Protocol
  • First Online:
Plant Genotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2638))

  • 1022 Accesses

Abstract

The advent of advanced NGS technologies have led to the generation of enormous amount of sequence data which further aid in the discovery of the various type of markers such as SSRs, SNPs, InDels, etc. Among all these markers, microsatellite SSR markers can be mined from the ddRADseq data as certain properties of SSR markers make them ideal markers for study. These assist researchers and breeders in diversity analysis and producing new varieties with desired traits. To extract the markers, first, the ddRADseq data is assembled into consensus sequences using STACKS program which are further assembled for mining microsatellites using QDD along with MISA tool.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalia RK, Rai MK, Kalia S, Singh R, Dhawan AK (2011) Microsatellite markers: an overview of the recent progress in plants. Euphytica 177:309–334. https://doi.org/10.1007/s10681-010-0286-9

    Article  CAS  Google Scholar 

  2. Taheri S, Lee AT, Yusop MR, Hanafi MM, Sahebi M, Azizi P et al (2018) Mining and development of novel SSR markers using next generation sequencing (NGS) data in plants. Molecules 23:399. https://doi.org/10.3390/molecules23020399

    Article  CAS  Google Scholar 

  3. Varala K, Swaminathan K, Li Y, Hudson ME (2011) Rapid genotyping of soybean cultivars using high throughput sequencing. PLoS One 6:e24811. https://doi.org/10.1371/journal.pone.0024811

    Article  CAS  Google Scholar 

  4. Peterson BK, Weber JN, Kay EH, Fisher HS, Hoekstra HE (2012) Double digest RADseq: an inexpensive method for de novo SNP discovery and genotyping in model and non-model species. PLoS One 7:e37135. https://doi.org/10.1371/journal.pone.0037135

    Article  CAS  Google Scholar 

  5. Esposito S, Cardi T, Campanelli G, Sestili S, Díez MJ, Soler S et al (2020) ddRAD sequencing-based genotyping for population structure analysis in cultivated tomato provides new insights into the genomic diversity of Mediterranean ‘da serbo’ type long shelf-life germplasm. Hortic Res 7:134. https://doi.org/10.1038/s41438-020-00353-6

    Article  CAS  Google Scholar 

  6. Shirasawa K, Hirakawa H, Isobe S (2016) Analytical workflow of double-digest restriction site-associated DNA sequencing based on empirical and in silico optimization in tomato. DNA Res 23:145–153. https://doi.org/10.1093/dnares/dsw004

    Article  CAS  Google Scholar 

  7. Ab Razak S, Ghazalli MN, Azman NHEN, Abd Majid AM, Ismail SN (2021) RAD sequencing for the development of microsatellite markers for identification of Malaysian taro cultivars. Biotechnol Equip 35:1284–1290. https://doi.org/10.1080/13102818.2021.1969278

    Article  CAS  Google Scholar 

  8. McCormack JE, Hird SM, Zellmer AJ, Carstens BC, Brumfield RT (2013) Applications of next-generation sequencing to phylogeography and phylogenetics. Mol Phylogenet Evol 66:526–538. https://doi.org/10.1016/j.ympev.2011.12.007

    Article  CAS  Google Scholar 

  9. Miller MR, Dunham JP, Amores A, Cresko WA, Johnson EA (2007) Rapid and cost-effective polymorphism identification and genotyping using restriction site associated DNA (RAD) markers. Genome Res 17:240–248. https://doi.org/10.1101/gr.5681207

    Article  CAS  Google Scholar 

  10. Wang JY, Yan SY, Hui WK, Gong W (2020) SNP discovery for genetic diversity and population structure analysis coupled with restriction-associated DNA (RAD) sequencing in walnut cultivars of Sichuan Province, China. Biotechnol Equip 34:652–664. https://doi.org/10.1080/13102818.2020.1797531

    Article  CAS  Google Scholar 

  11. Miah G, Rafii MY, Ismail MR, Puteh AB, Rahim HA, Islam KN et al (2013) A review of microsatellite markers and their applications in rice breeding programs to improve blast disease resistance. Int J Mol Sci 14:22499–22528. https://doi.org/10.3390/ijms141122499

    Article  CAS  Google Scholar 

  12. Phumichai C, Phumichai T, Wongkaew A (2015) Novel chloroplast microsatellite (cpSSR) markers for genetic diversity assessment of cultivated and wild Hevea rubber. Plant Mol Biol Rep 33:1486–1498. https://doi.org/10.1007/s11105-014-0850-x

    Article  CAS  Google Scholar 

  13. Lawson MJ, Zhang L (2006) Distinct patterns of SSR distribution in the Arabidopsis thaliana and rice genomes. Genome Biol 7:R14. https://doi.org/10.1186/gb-2006-7-2-r14

    Article  CAS  Google Scholar 

  14. Buschiazzo E, Gemmell NJ (2006) The rise, fall and renaissance of microsatellites in eukaryotic genomes. BioEssays 28:1040–1050. https://doi.org/10.1002/bies.20470

    Article  CAS  Google Scholar 

  15. Oliveira EJ, Pádua JG, Zucchi MI, Vencovsky R, Vieira MLC (2006) Origin, evolution and genome distribution of microsatellites. Genet Mol Biol 29:294–307. https://doi.org/10.1590/S1415-47572006000200018

    Article  CAS  Google Scholar 

  16. Selkoe KA, Toonen RJ (2006) Microsatellites for ecologists: a practical guide to using and evaluating microsatellite markers. Ecol Lett 9:615–629. https://doi.org/10.1111/j.1461-0248.2006.00889.x

    Article  Google Scholar 

  17. Fan L, Zhang MY, Liu QZ, Li LT, Song Y, Wang LF et al (2013) Transferability of newly developed pear SSR markers to other Rosaceae species. Plant Mol Biol Rep 31:1271–1282. https://doi.org/10.1007/s11105-013-0586-z

    Article  CAS  Google Scholar 

  18. Mason AS (2015) SSR genotyping. In: Batley J (ed) Plant genotyping. Methods and protocols. Humana, New York, pp 77–89. https://doi.org/10.1007/978-1-4939-1966-6_6

    Chapter  Google Scholar 

  19. Davey JW, Hohenlohe PA, Etter PD, Boone JQ, Catchen JM, Blaxter ML (2011) Genome-wide genetic marker discovery and genotyping using next-generation sequencing. Nat Rev Genet 12:499–510. https://doi.org/10.1038/nrg3012

    Article  CAS  Google Scholar 

  20. Catchen J, Hohenlohe PA, Bassham S, Amores A, Cresko WA (2013) Stacks: an analysis tool set for population genomics. Mol Ecol 22:3124–3140. https://doi.org/10.1111/mec.12354

    Article  Google Scholar 

  21. Catchen JM, Amores A, Hohenlohe P, Cresko W, Postlethwait JH (2011) Stacks: building and genotyping loci de novo from short-read sequences. G3 Genes Genom Genet 1:171–182. https://doi.org/10.1534/g3.111.000240

    Article  CAS  Google Scholar 

  22. Meglécz E, Costedoat C, Dubut V, Gilles A, Malausa T, Pech N et al (2010) QDD: a user-friendly program to select microsatellite markers and design primers from large sequencing projects. Bioinformatics 26:403–404. https://doi.org/10.1093/bioinformatics/btp670

    Article  CAS  Google Scholar 

  23. Untergasser A, Nijveen H, Rao X, Bisseling T, Geurts R, Leunissen JA (2007) Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res 35:W71–W74. https://doi.org/10.1093/nar/gkm306

    Article  Google Scholar 

  24. Zargar SM, Raatz B, Sonah H, Bhat JA, Dar ZA, Agrawal GK et al (2015) Recent advances in molecular marker techniques: insight into QTL mapping, GWAS and genomic selection in plants. J Crop Sci Biotechnol 18:293–308. https://doi.org/10.1007/s12892-015-0037-5

    Article  Google Scholar 

  25. Gao H, Jiang K, Geng Y, Chen XY (2012) Development of microsatellite primers of the largest seagrass, Enhalus acoroides (Hydrocharitaceae). Am J Bot 99:e99–e101. https://doi.org/10.3732/ajb.1100412

    Article  Google Scholar 

  26. Jain SM, Brar DS, Ahloowalia BS (eds) (2009) Molecular techniques in crop improvement. Springer, Dordrecht

    Google Scholar 

  27. Antiqueira LMOR (2013) Application of microsatellite molecular markers in studies of genetic diversity and conservation of plant species of Cerrado. J Plant Sci 1:1–5. https://doi.org/10.11648/j.jps.20130101.11

    Article  Google Scholar 

  28. Vieira MLC, Santini L, Diniz AL, Munhoz CDF (2016) Microsatellite markers: what they mean and why they are so useful. Genet Mol Biol 39:312–328. https://doi.org/10.1590/1678-4685-GMB-2016-0027

    Article  Google Scholar 

  29. Cyriac A, Paul R, Anupama K, Sheeja TE, Nirmal Babu K, Parthasarathy VA (2016) Isolation and characterization of genomic microsatellite markers for small cardamom (Elettaria cardamomum Maton) for utility in genetic diversity analysis. Physiol Mol Biol Plants 22:219–229. https://doi.org/10.1007/s12298-016-0355-1

    Article  CAS  Google Scholar 

  30. Gupta PK, Varshney RK (2000) The development and use of microsatellite markers for genetic analysis and plant breeding with emphasis on bread wheat. Euphytica 113:163–185. https://doi.org/10.1023/A:1003910819967

    Article  CAS  Google Scholar 

  31. Garris AJ, Tai TH, Coburn J, Kresovich S, McCouch S (2005) Genetic structure and diversity in Oryza sativa L. Genetics 169:1631–1638. https://doi.org/10.1534/genetics.104.035642

    Article  CAS  Google Scholar 

  32. Nadeem MA, Nawaz MA, Shahid MQ, Doğan Y, Comertpay G, Yıldız M et al (2018) DNA molecular markers in plant breeding: current status and recent advancements in genomic selection and genome editing. Biotechnol Equip 32:261–285. https://doi.org/10.1080/13102818.2017.1400401

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mir Asif Iquebal .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Tandon, G., Jaiswal, S., Iquebal, M.A., Rai, A., Kumar, D. (2023). Whole Genome Wide SSR Markers Identification Based on ddRADseq Data. In: Shavrukov, Y. (eds) Plant Genotyping. Methods in Molecular Biology, vol 2638. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3024-2_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3024-2_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3023-5

  • Online ISBN: 978-1-0716-3024-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics