Skip to main content

Fluorescence In Situ Hybridization (FISH) for the Genotyping of Triticeae Tribe Species and Hybrids

  • Protocol
  • First Online:
Plant Genotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2638))

Abstract

This chapter is dedicated to using fluorescence in situ hybridization (FISH) for the genotyping of Triticeae tribe species and hybrids. The basic method of FISH on metaphase chromosomes is presented with a discussion on its modifications, and deoxyribonucleic acid (DNA) probes that can be useful for genotyping are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brady T, Clutter ME (1972) Cytolocalization of ribosomal cistrons in plant polytene chromosomes. J Cell Biol 53:827–832. https://doi.org/10.1083/jcb.53.3.827

    Article  CAS  Google Scholar 

  2. Wimber DE, Duffey PA, Steffensen DM, Prensky W (1974) Localization of the 5S RNA genes in Zea mays by RNA-DNA hybridization in situ. Chromosoma 47:353–359. https://doi.org/10.1007/BF00326358

    Article  CAS  Google Scholar 

  3. Jiang J, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping: the first 10 years. Genome 37:717–725. https://doi.org/10.1139/g94-102

    Article  CAS  Google Scholar 

  4. Luo X, Chen S, Zhang Y (2022) PlantRep: a database of plant repetitive elements. Plant Cell Rep 41:1163–1166. https://doi.org/10.1007/s00299-021-02817-y

    Article  CAS  Google Scholar 

  5. Schwarzacher T, Leitch AR, Bennett MD, Heslop-Harrison JS (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324. https://doi.org/10.1093/oxfordjournals.aob.a087847

    Article  Google Scholar 

  6. Rayburn AL, Gill BS (1986) Isolation of a D-genome specific repeated DNA sequence from Aegilops squarrosa. Plant Mol Biol Rep 4:102–109. https://doi.org/10.1007/BF02732107

    Article  CAS  Google Scholar 

  7. Mukai Y, Nakahara Y, Yamamoto M (1993) Simultaneous discrimination of the three genomes in hexaploid wheat by multicolor fluorescence in situ hybridization using total genomic and highly repeated DNA probes. Genome 36:489–494. https://doi.org/10.1139/g93-067

    Article  CAS  Google Scholar 

  8. Schneider A, Linc G, Molnar-Lang M (2003) Fluorescence in situ hybridization polymorphism using two repetitive DNA clones in different cultivars of wheat. Plant Breed 122:396–400. https://doi.org/10.1046/j.1439-0523.2003.00891.x

    Article  CAS  Google Scholar 

  9. Adonina IG, Leonova IN, Badaeva ED, Salina EA (2017) Genotyping of hexaploid wheat varieties from different Russian regions. Russ J Genet Appl Res 7:6–13. https://doi.org/10.1134/S2079059717010014

    Article  CAS  Google Scholar 

  10. Badaeva ED, Friebe B, Gill BS (1996) Genome differentiation in Aegilops. 1. Distribution of highly repetitive DNA sequences on chromosome of diploid species. Genome 39:293–306. https://doi.org/10.1139/g96-040

    Article  CAS  Google Scholar 

  11. Badaeva ED, Amosova AV, Muravenko OV, Samatadze TE, Chikida NN, Zelenin AV et al (2002) Genome differentiation in Aegilops. 3. Evolution of the D-genome cluster. Plant Syst Evol 231:163–190. https://doi.org/10.1007/s006060200018

    Article  CAS  Google Scholar 

  12. Badaeva ED, Amosova AV, Samatadze TE, Zoshchuk SA, Shostak NG, Chikida NN et al (2004) Genome differentiation in Aegilops. 4. Evolution of the U-genome cluster. Plant Syst Evol 246:45–76. https://doi.org/10.1007/s00606-003-0072-4

    Article  CAS  Google Scholar 

  13. Ruban AS, Badaeva ED (2018) Evolution of the S-genomes in Triticum-Aegilops alliance: evidences from chromosome analysis. Front Plant Sci 9:1756. https://doi.org/10.3389/fpls.2018.01756

    Article  Google Scholar 

  14. Delgado A, Carvalho A, Martın AC, Martın A, Lima-Brito J (2016) Use of the synthetic Oligo-pTa535 and Oligo-pAs1 probes for identification of Hordeum chilense-origin chromosomes in hexaploid tritordeum. Genet Resour Crop Evol 63:945–951. https://doi.org/10.1007/s10722-016-0402-3

    Article  CAS  Google Scholar 

  15. Badaeva ED, Surzhikov SA, Agafonov AV (2019) Molecular-cytogenetic analysis of diploid wheatgrass Thinopyrum bessarabicum (Savul. and Rayss) A. Löve. Comp Cytogenet 13:389–402. https://doi.org/10.3897/CompCytogen.v13i4.36879

    Article  Google Scholar 

  16. Bedbrook JR, Jones J, O’Dell M, Thompson RD, Flavell RB (1980) A molecular description of telomeric heterochromatin in Secale species. Cell 19:545–560. https://doi.org/10.1016/0092-8674(80)90529-2

    Article  CAS  Google Scholar 

  17. Katsiotis A, Hagidimitriou M, Heslop-Harrison JS (1997) The close relationship between the A and B genomes in Avena L. (Poaceae) determined by molecular cytogenetic analysis of total genomic, tandemly and dispersed repetitive DNA. Ann Bot 79:103–109. https://doi.org/10.1006/anbo.1996.0312

    Article  CAS  Google Scholar 

  18. Taketa S, Ando H, Takeda K, Harrison GE, Heslop-Harrison JS (2000) The distribution, organization and evolution of two abundant and widespread repetitive DNA sequences in the genus Hordeum. Theor Appl Genet 100:169–176. https://doi.org/10.1007/s001220050023

    Article  CAS  Google Scholar 

  19. Contento A, Heslop-Harrison JS, Schwarzacher T (2005) Diversity of a major repetitive DNA sequence in diploid and polyploid Triticeae. Cytogenet Genome Res 109:34–42. https://doi.org/10.1159/000082379

    Article  CAS  Google Scholar 

  20. Salina EA, Pestsova EG, Vershinin AV (1997) “Spelt-1” – a new family of tandem repeats. Rus J Genet 33:437–442

    CAS  Google Scholar 

  21. Salina EA, Lim YK, Badaeva ED, Shcherban AB, Adonina IG, Amosova AV et al (2006) Phylogenetic reconstruction of Aegilops section Sitopsis and the evolution of tandem repeats in the diploids and derived wheat polyploids. Genome 49:1023–1035. https://doi.org/10.1139/g06-050

    Article  CAS  Google Scholar 

  22. Anamthawat-Jonsson K, Heslop-Harrison JS (1993) Isolation and characterization of genome-specific DNA sequences in Triticeae species. Mol Gen Genet 240:151–158. https://doi.org/10.1007/BF00277052

    Article  CAS  Google Scholar 

  23. Salina E, Adonina I, Vatolina T, Kurata N (2004) A comparative analysis of the composition and organization of two subtelomeric repeat families in Aegilops speltoides Tausch and related species. Genetica 122:227–237. https://doi.org/10.1007/s10709-004-5602-7

    Article  CAS  Google Scholar 

  24. Komuro S, Endo R, Shikata K, Kato A (2013) Genomic and chromosomal distribution patterns of various repeated DNA sequences in wheat revealed by a fluorescence in situ hybridization procedure. Genome 56:131–137. https://doi.org/10.1139/gen-2013-0003

    Article  CAS  Google Scholar 

  25. Badaeva ED, Amosova AV, Goncharov NP, Macas J, Ruban AS, Grechishnikova IV et al (2015) A set of cytogenetic markers allows the precise identification of all A-genome chromosomes in diploid and polyploid wheat. Cytogenet Genome Res 146:71–79. https://doi.org/10.1159/000433458

    Article  Google Scholar 

  26. Paux E, Roger D, Badaeva E, Gay G, Bernard M, Sourdille P et al (2006) Characterizing the composition and evolution of homoeologous genomes in hexaploid wheat through BAC-end sequencing on chromosome 3B. Plant J 48:463–474. https://doi.org/10.1111/j.1365-313X.2006.02891.x

    Article  CAS  Google Scholar 

  27. Badaeva ED, Zoshchuk SA, Paux E, Gay G, Zoshchuk NV, Roger D et al (2010) Fat element – a new marker for chromosome and genome analysis in the Triticeae. Chromosom Res 18:697–709. https://doi.org/10.1007/s10577-010-9151-x

    Article  CAS  Google Scholar 

  28. Gerlach WL, Bedbrook JR (1979) Cloning and characterization of ribosomal RNA genes from wheat and barley. Nucleic Acid Res 7:1869–1885. https://doi.org/10.1093/nar/7.7.1869

    Article  CAS  Google Scholar 

  29. Badaeva ED, Friebe B, Gill BS (1996) Genome differentiation in Aegilops. 2. Physical mapping of 5S and 18S-26S ribosomal RNA gene families in diploid species. Genome 39:1150–1158. https://doi.org/10.1139/g96-145

    Article  CAS  Google Scholar 

  30. Gerlach WL, Dyer TA (1980) Sequence organization of the repeated units in the nucleus of wheat which contains 5S-rRNA genes. Nucleic Acid Res 8:4851–4865. https://doi.org/10.1093/nar/8.21.4851

    Article  CAS  Google Scholar 

  31. Cuadrado A, Schwarzacher T, Jouve N (2000) Identification of different chromatin classes in wheat using in situ hybridization with simple sequence repeat oligonucleotides. Theor Appl Genet 101:711–717. https://doi.org/10.1007/s001220051535

    Article  CAS  Google Scholar 

  32. Adonina IG, Goncharov NP, Badaeva ED, Sergeeva EM, Petrash NV, Salina EA (2015) (GAA)n microsatellite as an indicator of the A genome reorganization during wheat evolution and domestication. Comp Cytogenet 9:533–547. https://doi.org/10.3897/CompCytogen.v9i4.5120

    Article  Google Scholar 

  33. Hu D, Kang L, Liu Y, Ma J, Tang X, Zeng J et al (2018) A simple and effective ND-FISH probe design for identifying barley (Hordeum vulgare) chromosomes. Genet Resour Crop Evol 65:2189–2198. https://doi.org/10.1007/s10722-018-0684-8

    Article  CAS  Google Scholar 

  34. Zhang Y, Fan C, Chen Y, Wang RRC, Zhang X, Han F et al (2021) Genome evolution during bread wheat formation unveiled by the distribution dynamics of SSR sequences on chromosomes using FISH. BMC Genomics 22:55. https://doi.org/10.1186/s12864-020-07364-6

    Article  CAS  Google Scholar 

  35. Birnboim HC, Doly J (1975) A rapid alkaline extraction procedure for screening recombinant plasmid DNA. Nucleic Acid Res 7:1513–1523. https://doi.org/10.1093/nar/7.6.1513

    Article  Google Scholar 

  36. Kidwell KK, Osborn TC (1992) Simple plant DNA isolation procedures. In: Beckman JS, Osborn TC (eds) Plant genomes: methods for genetic and physical mapping. Kluwer, Dordrecht, pp 1–13

    Google Scholar 

  37. Plaschke J, Ganal MW, Röder MS (1995) Detection of genetic diversity in closely related bread wheat using microsatellite markers. Theor Appl Genet 91:1001–1007. https://doi.org/10.1007/BF00223912

    Article  CAS  Google Scholar 

  38. Tang Z, Yang Z, Fu S (2014) Oligonucleotides replacing the roles of repetitive sequences pAs1, pSc119.2, pTa-535, pTa71, CCS1, and pAWRC.1 for FISH analysis. J Appl Genet 55:313–318. https://doi.org/10.1007/s13353-014-0215-z

    Article  CAS  Google Scholar 

  39. Tang S, Tang Z, Qiu L, Yang Z, Li G, Lang T et al (2018) Developing new oligo probes to distinguish specific chromosomal segments and the A, B, D genomes of wheat (Triticum aestivum L.) using ND-FISH. Front Plant Sci 9:1104. https://doi.org/10.3389/fpls.2018.01104

    Article  Google Scholar 

  40. Badaeva ED, Ruban AS, Aliyeva-Schnorr L, Municio C, Hesse S, Houben A (2017) In situ hybridization to plant chromosomes. In: Liehr T (ed) Fluorescence in situ hybridization (FISH). Application guide. Springer protocols handbooks. Springer-Verlag, Berlin Heidelberg, pp 477–494. https://doi.org/10.1007/978-3-662-52959-1_49

    Chapter  Google Scholar 

  41. Cuadrado A, Golczyk H, Jouve N (2009) A novel, simple and rapid nondenaturing FISH (ND-FISH) technique for the detection of plant telomeres. Potential used and possible target structures detected. Chromosom Res 17:755–762. https://doi.org/10.1007/s10577-009-9060-z

    Article  CAS  Google Scholar 

  42. Zhang P, Friebe B (2009) FISH on plant chromosomes. In: Liehr T (ed) Fluorescence in situ hybridization (FISH) – application guide. Springer-Verlag, Berlin Heidelberg, pp 365–394. https://doi.org/10.1007/978-3-540-70581-9_32

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Irina Adonina .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Adonina, I. (2023). Fluorescence In Situ Hybridization (FISH) for the Genotyping of Triticeae Tribe Species and Hybrids. In: Shavrukov, Y. (eds) Plant Genotyping. Methods in Molecular Biology, vol 2638. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3024-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3024-2_31

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3023-5

  • Online ISBN: 978-1-0716-3024-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics