Skip to main content

In Situ Hybridization to Plant Chromosomes

  • Protocol
  • First Online:
Fluorescence In Situ Hybridization (FISH)

Abstract

In situ hybridization is a fundamental method in modern plant molecular cytogenetics research. It cannot be overstressed that good in situ hybridization results begin with good cytological preparations. Well-spread chromosome preparations with low amounts of cytoplasm give the best hybridization signals. Here, we present different protocols for the preparation of mitotic and meiotic plant chromosomes as well as tissue sections suitable for the detection of low-/single-copy sequences in a range of plant species. In addition a method suitable for the detection of single-copy probes is provided.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lavania UC (1998) Fluorescence in situ hybridization in genome, chromosome and gene identification in plants. Curr Sci India 74:126–133

    CAS  Google Scholar 

  2. Speicher MR, Carter NP (2005) The new cytogenetics: blurring the boundaries with molecular biology. Nat Rev Genet 6:782–792

    Article  CAS  PubMed  Google Scholar 

  3. Brady T, Clutter ME (1972) Cytolocalization of ribosomal cistrons in plant polytene chromosomes. J Cell Biol 53:827–832

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Timmis JN, Deumling B, Ingle J (1975) Localisation of satellite DNA sequences in nuclei and chromosomes of two plants. Nature 257:152–155

    Article  CAS  PubMed  Google Scholar 

  5. Wimber D, Duffey P, Steffensen DM et al (1974) Localization of the 5S RNA genes in Zea mays by RNA-DNA hybridization in situ. Chromosoma 47:353–360

    Article  CAS  Google Scholar 

  6. Rayburn AL, Gill BS (1985) Use of biotin-labeled probes to map specific DNA-sequences on wheat chromosomes. J Heredity 76:78–81

    Google Scholar 

  7. Schwarzacher T, Leitch AR, Bennett MD et al (1989) In situ localization of parental genomes in a wide hybrid. Ann Bot 64:315–324

    Google Scholar 

  8. Yamamoto M, Mukai Y (1989) Application of fluorescence in situ hybridisation to molecular cytogenentics of wheat. Wheat Inf Serv 69:30

    Google Scholar 

  9. Jiang JM, Gill BS (2006) Current status and the future of fluorescence in situ hybridization (FISH) in plant genome research. Genome 49:1057–1068

    Article  CAS  PubMed  Google Scholar 

  10. Jiang JM, Gill BS (1994) Nonisotopic in situ hybridization and plant genome mapping – the first 10 years. Genome 37:717–725

    Article  CAS  PubMed  Google Scholar 

  11. Silva GG, Souza MM (2013) Genomic in situ hybridization in plants. Genet Mol Res 12:2953–2965

    Article  CAS  PubMed  Google Scholar 

  12. Lysak MA, Fransz PF, Ali HB et al (2001) Chromosome painting in Arabidopsis thaliana. Plant J 28:689–697

    Article  CAS  PubMed  Google Scholar 

  13. Gill B, Friebe B (1998) Plant cytogenetics at the dawn of the 21st century. Curr Opin Plant Biol 1:109–115

    Article  CAS  PubMed  Google Scholar 

  14. Kato A, Albert PS, Vega JM et al (2006) Sensitive fluorescence in situ hybridization signal detection in maize using directly labeled probes produced by high concentration DNA polymerase nick translation. Biotech Histochem 81:71–78

    Article  PubMed  Google Scholar 

  15. Danilova TV, Friebe B, Gill BS (2014) Development of a wheat single gene FISH map for analyzing homoeologous relationship and chromosomal rearrangements within the Triticeae. Theor Appl Genet 127:715–730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Aliyeva-Schnorr L, Beier S, Karafiátová M et al (2015) Cytogenetic mapping with centromeric BAC contigs shows that this recombination-poor region comprises more than half of barley chromosome 3H. Plant J 84:385–394

    Article  CAS  PubMed  Google Scholar 

  17. Valárik M, Bartos J, Kovárová P et al (2004) High-resolution FISH on super-stretched flow-sorted plant chromosomes. Plant J 37:940–950

    Article  PubMed  Google Scholar 

  18. Fransz PF, Alonso-Blanco C, Liharska TB et al (1996) High-resolution physical mapping in Arabidopsis thaliana and tomato by fluorescence in situ hybridization to extended DNA fibres. Plant J 9:421–430

    Article  CAS  PubMed  Google Scholar 

  19. Aliyeva-Schnorr L, Ma L, Houben A (2015) A fast air-dry dropping chromosome preparation method suitable for FISH in plants. J Vis Exp 106:e53470

    Google Scholar 

  20. Sanchez Moran E, Armstrong SJ, Santos JL (2001) Chiasma formation in Arabidopsis thaliana accession Wassileskija and in two meiotic mutants. Chromosome Res 9:121–128

    Article  CAS  PubMed  Google Scholar 

  21. Steedman HF (1957) Polyester wax; a new ribboning embedding medium for histology. Nature 179:1345

    Article  CAS  PubMed  Google Scholar 

  22. Braszewska-Zalewska AJ, Wolny EA, Smialek L et al (2013) Tissue-specific epigenetic modifications in root apical meristem cells of Hordeum vulgare. PLoS One 8:e69204

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Muravenko OV, Amosova AV, Samatadze TE et al (2003) 9-Aminoacridine: an efficient reagent to improve human and plant chromosome banding patterns and to standardize chromosome image analysis. Cytometry A 51:52–57

    Article  PubMed  Google Scholar 

  24. Armstrong SJ, Jones GH (2003) Meiotic cytology and chromosome behaviour in wild-type Arabidopsis thaliana. J Exp Bot 54:1–10

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the members of the laboratories for a helpful discussion. C.M. is the recipient of a Marie Curie Initial Training Network fellowship (FP7-PEOPLE-2013-ITN, CHIP-ET).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Houben .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag Berlin Heidelberg

About this protocol

Cite this protocol

Badaeva, E.D., Ruban, A.S., Aliyeva-Schnorr, L., Municio, C., Hesse, S., Houben, A. (2017). In Situ Hybridization to Plant Chromosomes. In: Liehr, T. (eds) Fluorescence In Situ Hybridization (FISH). Springer Protocols Handbooks. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-52959-1_49

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-52959-1_49

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-52957-7

  • Online ISBN: 978-3-662-52959-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics