Skip to main content

Derived Polymorphic Amplified Cleaved Sequence (dPACS) Assay

  • Protocol
  • First Online:
Plant Genotyping

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2638))

  • 1010 Accesses

Abstract

The derived polymorphic amplified cleaved sequence (dPACS) assay is a simple polymerase chain reaction/restriction fragment length polymorphism (PCR-RFLP)-based procedure for detecting known single-nucleotide polymorphisms (SNPs) and deletion–insertion polymorphisms (DIPs). It is relatively straightforward to carry out using basic and commonly available molecular biology kits. The method differs from other PCR-RFLP assays in that it employs 35–55 bp primer pairs that encompass the entire targeted DNA region except for a few diagnostic nucleotides being examined. In so doing, it allows for the introduction of nucleotide mismatches in one or both primers for differentiating wild from mutant sequences following polymerase chain reaction, restriction digestion and MetaPhor gel electrophoresis. Primer design and the selection of discriminating enzymes are achieved with the help of the dPACS 1.0 program. The method is exemplified here with the positive detection of serine 264-psbA, a key determinant for the effective binding of some photosystem II inhibitors to their target. A serine-to-glycine mutation at codon 264 of psbA causes resistance to serine-binding photosystem II herbicides in several grasses and broad-leaf weeds, including Amaranthus retroflexus, which is employed in this study.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Brookes AJ (1999) The essence of SNPs. Gene 234:177–186. https://doi.org/10.1016/s0378-1119(99)00219-x

    Article  CAS  Google Scholar 

  2. Montgomery S, Goode D, Kvikstad E, Albers C, Zhang Z, Mu X et al (2013) The origin, evolution, and functional impact of short insertion-deletion variants identified in 179 human genomes. Genome Res 23:749–761. https://doi.org/10.1101/gr.148718.112

    Article  CAS  Google Scholar 

  3. Wang L, Guo W, Fang C, Feng W, Huang Y, Zhang X et al (2021) Functional characterization of a loss-of-function mutant I324M of arginine vasopressin receptor 2 in X-linked nephrogenic diabetes insipidus. Sci Rep 11:11057. https://doi.org/10.1038/s41598-021-90736-z

    Article  CAS  Google Scholar 

  4. Safi A, Medici A, Szponarski W, Martin F, Clément-Vidal A, Marshall-Colon A et al (2021) GARP transcription factors repress Arabidopsis nitrogen starvation response via ROS-dependent and -independent pathways. J Exp Bot 72:3881–3901. https://doi.org/10.1093/jxb/erab114

    Article  CAS  Google Scholar 

  5. Veitia RA (2022) Who ever thought genetic mutations were random? Trends Plant Sci 27:733–735. https://doi.org/10.1016/j.tplants.2022.03.003

    Article  CAS  Google Scholar 

  6. Teumer A, Ernst FD, Wiechert A, Uhr K, Nauck M, Petersmann A et al (2013) Comparison of genotyping using pooled DNA samples (allelotyping) and individual genotyping using the affymetrix genome-wide human SNP array 6.0. BMC Genomics 14:506. https://doi.org/10.1186/1471-2164-14-506

    Article  Google Scholar 

  7. Hidaka A, Sasazuki S, Matsuo K, Ito H, Charvat H, Sawada N et al (2016) CYP1A1, GSTM1 and GSTT1 genetic polymorphisms and gastric cancer risk among Japanese: a nested case–control study within a large-scale population-based prospective study. Int J Cancer 139:759–768. https://doi.org/10.1002/ijc.30130

    Article  CAS  Google Scholar 

  8. Semagn K, Babu R, Hearne S, Olsen M (2014) Single nucleotide polymorphism genotyping using Kompetitive Allele Specific PCR (KASP): overview of the technology and its application in crop improvement. Mol Breed 33:1–14. https://doi.org/10.1007/s11032-013-9917-x

    Article  CAS  Google Scholar 

  9. Arita H, Narita Y, Matsushita Y, Fukushima S, Yoshida A, Takami H et al (2015) Development of a robust and sensitive pyrosequencing assay for the detection of IDH1/2 mutations in gliomas. Brain Tumor Pathol 32:22–30. https://doi.org/10.1007/s10014-014-0186-0

    Article  CAS  Google Scholar 

  10. Li F, Henderson G, Sun X, Cox F, Janssen PH, Guan LL (2016) Taxonomic assessment of rumen microbiota using total RNA and targeted amplicon sequencing approaches. Front Microbiol 7:987. https://doi.org/10.3389/fmicb.2016.00987

    Article  Google Scholar 

  11. Griffin TJ, Smith LM (2000) Single-nucleotide polymorphism analysis by MALDI–TOF mass spectrometry. Trends Biotechnol 18:77–84. https://doi.org/10.1016/s0167-7799(99)01401-8

    Article  CAS  Google Scholar 

  12. Muir P, Li S, Lou S, Wang D, Spakowicz DJ, Salichos L et al (2016) The real cost of sequencing: scaling computation to keep pace with data generation. Genome Biol 17:53. https://doi.org/10.1186/s13059-016-0917-0

    Article  CAS  Google Scholar 

  13. Neff MM, Neff JD, Chory J, Pepper AE (1998) dCAPS, a simple technique for the genetic analysis of single nucleotide polymorphisms: experimental applications in Arabidposis thaliana genetics. Plant J 14:387–392. https://doi.org/10.1046/j.1365-313x.1998.00124.x

    Article  CAS  Google Scholar 

  14. Ota M, Asamura H, Oki T, Sada M (2009) Restriction enzyme analysis of PCR products. In: Komar AA (ed) Single nucleotide polymorphisms: methods and protocols. Humana, Totowa, pp 405–414. https://doi.org/10.1007/978-1-60327-411-1_25

    Chapter  Google Scholar 

  15. Bottema C, Sommer S (1993) PCR amplification of specific alleles: rapid detection of known mutations and polymorphisms. Mutat Res 288:93–102. https://doi.org/10.1016/0027-5107(93)90211-w

    Article  CAS  Google Scholar 

  16. Kaundun SS, Hutchings SJ, Marchegiani E, Rauser R, Jackson LV (2020) A derived Polymorphic Amplified Cleaved Sequence assay for detecting the Δ210 PPX2L codon deletion conferring target-site resistance to protoporphyrinogen oxidase-inhibiting herbicides. Pest Manag Sci 76:789–796. https://doi.org/10.1002/ps.5581

    Article  CAS  Google Scholar 

  17. Kaundun SS, Marchegiani E, Hutchings SJ, Baker K (2019) Derived polymorphic amplified cleaved sequence (dPACS): a novel PCR-RFLP procedure for detecting known single nucleotide and deletion-insertion polymorphisms. Int J Mol Sci 20:3193. https://doi.org/10.3390/ijms20133193

    Article  CAS  Google Scholar 

  18. Rogers SO, Bendich AJ (1989) Extraction of DNA from plant tissues. In: Gelvin SB, Schilperoort RA, Verma DPS (eds) Plant molecular biology manual. Springer, Dordrecht, pp 73–83. https://doi.org/10.1007/978-94-009-0951-9_6

    Chapter  Google Scholar 

  19. Otto P (2002) MagneSil™ paramagnetic particles: magnetics for DNA purification. JALA: J Assoc Lab Autom 7:34–37. https://doi.org/10.1016/S1535-5535-04-00191-1

    Article  CAS  Google Scholar 

  20. Green MR, Sambrook J (2018) Hot start polymerase chain reaction (PCR). Cold Spring Harb Protoc 5:pdb.prot095125. https://doi.org/10.1101/pdb.prot095125

    Article  Google Scholar 

  21. Kaundun SS, Downes J, Jackson LV, Hutchings SJ, Mcindoe E (2021) Impact of a novel W2027L mutation and non-target site resistance on acetyl-coA carboxylase-inhibiting herbicides in a French Lolium multiflorum population. Genes 12:1838. https://doi.org/10.3390/genes12111838

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to colleagues in the plant production team at the Syngenta, Jealott’s Hill International Research Centre, for growing the A. retroflexus plants used in this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shiv Shankhar Kaundun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kaundun, S.S., Hutchings, SJ., Downes, J., Baker, K. (2023). Derived Polymorphic Amplified Cleaved Sequence (dPACS) Assay. In: Shavrukov, Y. (eds) Plant Genotyping. Methods in Molecular Biology, vol 2638. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-3024-2_27

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-3024-2_27

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-3023-5

  • Online ISBN: 978-1-0716-3024-2

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics