Skip to main content

Omics and Remote Homology Integration to Decipher Protein Functionality

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2627))

Abstract

In the recent years, several “omics” technologies based on specific biomolecules (from DNA, RNA, proteins, or metabolites) have won growing importance in the scientific field. Despite each omics possess their own laboratorial protocols, they share a background of bioinformatic tools for data integration and analysis. A recent subset of bioinformatic tools, based on available templates or remote homology protocols, allow computational fast and high-accuracy prediction of protein structures. The quickly predict of actually unsolved protein structures, together with late omics findings allow a boost of scientific advances in multiple fields such as cancer, longevity, immunity, mitochondrial function, toxicology, drug design, biosensors, and recombinant protein engineering. In this chapter, we assessed methodological approaches for the integration of omics and remote homology inferences to decipher protein functionality, opening the door to the next era of biological knowledge.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sanger F (1949) The terminal peptides of insulin. Biochem J 45:563–574

    Article  CAS  PubMed  Google Scholar 

  2. Muirhead H, Perutz MF (1963) Structure of hemoglobin. A three-dimensional Fourier synthesis of reduced human hemoglobin at 5.5 Å resolution. Nature 199:633–638

    Article  CAS  PubMed  Google Scholar 

  3. Kendrew JC, Bodo G, Dintzis HM et al (1958) A three-dimensional model of the myoglobin molecule obtained by x-ray analysis. Nature 181:662–666

    Article  CAS  PubMed  Google Scholar 

  4. Matthews BW, Sigler PB, Henderson R et al (1967) Three-dimsensional structure of Tosyl-α-chymotrypsin. Nature 214:652–656

    Article  CAS  PubMed  Google Scholar 

  5. Freer ST, Kraut J, Robertus JD et al (1970) Chymotrypsinogen: 2.5 Å crystal structure, comparison with α-chymotrypsin, and implications for zymogen activation. Biochemistry 9:1997–2009

    Article  CAS  PubMed  Google Scholar 

  6. Poljak RJ, Amzel LM, Avey HP et al (1973) Three-dimensional structure of the fab’ fragment of a human immunoglobulin at 2.8 Å resolution. Proc Natl Acad Sci U S A 70:3305–3310

    Article  CAS  PubMed  Google Scholar 

  7. Berman HM, Westbrook J, Feng Z et al (2000) The protein data bank (www.rcsb.org). Nucleic Acids Res 28:235–242

  8. Callaway E (2020) ‘It opens up a whole new universe’: revolutionary microscopy technique sees individual atoms for first time. Nature 582:156–157

    Article  CAS  PubMed  Google Scholar 

  9. Martí-Renom MA, Stuart AC, Fiser A et al (2000) Comparative protein structure modeling of genes and genomes. Annu Rev Biophys Biomol Struct 29:291–325

    Article  PubMed  Google Scholar 

  10. Rost B, Schneider R, Sander C (1997) Protein fold recognition by prediction-based threading. J Mol Biol 270:471–480

    Article  CAS  PubMed  Google Scholar 

  11. Agüero-Chapin G, Galpert D, Molina-Ruiz R et al (2020) Graph theory-based sequence descriptors as remote homology predictors. Biomol Ther 10:26

    Google Scholar 

  12. Agüero-Chapin G, Pérez-Machado G, Molina-Ruiz R et al (2011) TI2BioP: topological indices to BioPolymers. Its practical use to unravel cryptic bacteriocin-like domains. Amino Acids 40:431–442

    Article  PubMed  Google Scholar 

  13. Marrero-Ponce Y, Castillo-Garit JA, Olazabal E et al (2004) TOMOCOMD-CARDD, a novel approach for computer-aided ‘rational’ drug design: I. Theoretical and experimental assessment of a promising method for computational screening and in silico design of new anthelmintic compounds. J Comput Aided Mol Des 19:615–634

    Article  Google Scholar 

  14. Díaz HG, Olazabal E, Castañedo N et al (2002) Markovian chemicals “in silico” design (MARCH-INSIDE), a promising approach for computer aided molecular design II: experimental and theoretical assessment of a novel method for virtual screening of fasciolicides. J Mol Model 8:237–245

    Article  Google Scholar 

  15. Senior AW, Evans R, Jumper J et al (2020) Improved protein structure prediction using potentials from deep learning. Nature 577:706–710

    Article  CAS  PubMed  Google Scholar 

  16. Heo L, Feig M (2020) High-accuracy protein structures by combining machine-learning with physics-based refinement. Proteins 88:637–642

    Article  CAS  PubMed  Google Scholar 

  17. Heo L, Feig M (2020) Modeling of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) proteins by machine learning and physics-based refinement. bioRxiv 2020.03.25.008904

    Google Scholar 

  18. Fleischmann RD, Adams MD, White O et al (1995) Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269:496–498

    Article  CAS  PubMed  Google Scholar 

  19. Fraser CM, Gocayne JD, White O et al (1995) The minimal gene complement of Mycoplasma genitalium. Science 270:397–404

    Article  CAS  PubMed  Google Scholar 

  20. Goffeau A, Barrell BG, Bussey H et al (1996) Life with 6000 genes. Science 274:562–567

    Article  Google Scholar 

  21. Consortium TCeS (1998) Genome sequence of the nematode C. elegans: a platform for investigating biology. Science 282:2012–2018

    Article  Google Scholar 

  22. Adams MD, Celniker SE, Holt RA et al (2000) The genome sequence of Drosophila melanogaster. Science 287:2185–2195

    Article  PubMed  Google Scholar 

  23. Rubin GM, Yandell MD, Wortman JR et al (2000) Comparative genomics of the eukaryotes. Science 287:2204–2215

    Article  CAS  PubMed  Google Scholar 

  24. Consortium IHGS (2001) Initial sequencing and analysis of the human genome. Nature 409:860–921

    Article  Google Scholar 

  25. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74:5463–5467

    Article  CAS  PubMed  Google Scholar 

  26. Shendure J, Balasubramanian S, Church GM et al (2017) DNA sequencing at 40: past, present and future. Nature 550:345–353

    Article  CAS  PubMed  Google Scholar 

  27. Scientists GKCo (2009) Genome 10K: a proposal to obtain whole-genome sequence for 10 000 vertebrate species. J Hered 100:659–674

    Article  Google Scholar 

  28. Koepfli KP, Paten B, Scientists GKCo et al (2015) The genome 10K project: a way forward. Annu Rev Anim Biosci 3:57–111

    Article  CAS  PubMed  Google Scholar 

  29. Lewis HA, Robison GE, Kress WJ et al (2018) Earth BioGenome Project: sequencing life for the future of life. Proc Natl Acad Sci U S A 115:4325–4333

    Article  Google Scholar 

  30. Rogers J, Gibbs RA (2014) Comparative primate genomics: emerging patterns of genome content and dynamics. Nat Rev Genet 15:347–359

    Article  CAS  PubMed  Google Scholar 

  31. Cazzanelli G, Pereira F, Alves S et al (2018) The yeast Saccharomyces cerevisiae as a model for understanding RAS proteins and their role in human tumorigenesis. Cell 7:14

    Article  Google Scholar 

  32. Bigham AW, Mao X, Mei R et al (2009) Identifying positive selection candidate loci for high-altitude adaptation in Andean populations. Hum Genomics 4:79–90

    Article  CAS  PubMed  Google Scholar 

  33. Itan Y, Gerbault P, Pines G (2015) Evolutionary genomics. Evol Bioinforma 11:53–55

    Google Scholar 

  34. Lau SKP, Woo PCY, Lai KKY et al (2011) Complete genome analysis of three novel picornaviruses from diverse bat species. J Virol 85:8819–8828

    Article  CAS  PubMed  Google Scholar 

  35. Barros DR, Alfenas-Zerbini P, Beserra JEA Jr et al (2011) Comparative analysis of the genomes of two isolates of cowpea aphid-borne mosaic virus (CABMV) obtained from different hosts. Arch Virol 156:1085–1091

    Article  CAS  PubMed  Google Scholar 

  36. Jungreis I, Sealfon R, Kellis M (2021) SARS-CoV-2 gene content and COVID-19 mutation impact by comparing 44 Sarbecovirus genomes. Nat Commun 12:2642

    Article  CAS  PubMed  Google Scholar 

  37. Finnigan GC, Hanson-Smith V, Stevens TH et al (2012) Evolution of increased complexity in a molecular machine. Nature 481:360–364

    Article  CAS  PubMed  Google Scholar 

  38. Duan M, Zhao W, Zhou L et al (2020) Omics research in vascular calcification. Clin Chim Acta 511:198–207

    Article  CAS  PubMed  Google Scholar 

  39. Melé M, Ferreira PG, Reverter F et al (2015) Human genomics. The human transcriptome across tissues and individuals. Science 348:660–665

    Article  PubMed  Google Scholar 

  40. Sandberg R (2014) Entering the era of single-cell transcriptomics in biology and medicine. Nat Methods 11:22–24

    Article  CAS  PubMed  Google Scholar 

  41. Sharma PV, Thaiss CA (2020) Host-microbiome interactions in the era of single-cell biology. Front Cell Infect Microbiol 10:569070

    Article  CAS  PubMed  Google Scholar 

  42. Das T, Andrieux G, Ahmed M et al (2020) Integration of online omics-data resources for cancer research. Front Genet 11:1320

    Article  Google Scholar 

  43. Daviss B (2005) Growing pains for metabolomics. Scientist 19:25–28

    Google Scholar 

  44. Hollywood K, Brison DR, Goodacre R (2006) Metabolomics: current technologies and future trends. Proteomics 6:4716–4723

    Article  CAS  PubMed  Google Scholar 

  45. McCafferty CL, Verbeke EJ, Marcotte EM et al (2020) Structural biology in the multi-omics era. J Chem Inf Model 60:2424–2429

    Article  CAS  PubMed  Google Scholar 

  46. Marra NJ, Stanhope MJ, Jue NK et al (2019) White shark genome reveals ancient elasmobranch adaptations associated with wound healing and the maintenance of genome stability. Proc Natl Acad Sci U S A 116:4446–4455

    Article  CAS  PubMed  Google Scholar 

  47. Machado JP, Philip S, Maldonado E et al (2016) Positive selection linked with generation of novel mammalian dentition patterns. Genome Biol Evol 8:2748–2759

    Article  CAS  PubMed  Google Scholar 

  48. Machado JP, Johnson WE, Gilbert MTP et al (2016) Bone-associated gene evolution and the origin of flight in birds. BMC Genomics 17:371

    Article  PubMed  Google Scholar 

  49. Parsons KJ, Albertson RC (2013) Unifying and generalizing the two strands of evo-devo. Trends Ecol Evol 28:584–591

    Article  PubMed  Google Scholar 

  50. Gladki A, Kaczanowski S, Szczesny P et al (2013) The evolutionary rate of antibacterial drug targets. BMC Bioinform 14

    Google Scholar 

  51. Negrini S, Gorgoulis VG, Halazonetis TD (2010) Genomic instability — an evolving hallmark of cancer. Nat Rev Mol Cell Biol 11:220–228

    Article  CAS  PubMed  Google Scholar 

  52. Chin A, Mourier J, Rummer JL (2015) Blacktip reef sharks (Carcharhinus melanopterus) show high capacity for wound healing and recovery following injury. Conserv Physiol 3:cov062

    Article  PubMed  Google Scholar 

  53. Albanes D (1998) Height, early energy intake, and cancer. Evidence mounts for the relation of energy intake to adult malignancies. BMJ 317:1331–1332

    Article  CAS  PubMed  Google Scholar 

  54. Toufektchan E, Toledo F (2018) The guardian of the genome revisited: p53 downregulates genes required for telomere maintenance, DNA repair, and centromere structure. Cancers 10:135

    Article  PubMed  Google Scholar 

  55. Domingues RR, Mastrochirico-Filho VA, Mendes NJ et al (2020) Comparative eye and liver differentially expressed genes reveal monochromatic vision and cancer resistance in the shortfin mako shark (Isurus oxyrinchus). Genomics 112:4817–4826

    Article  CAS  PubMed  Google Scholar 

  56. Marra NJ, Richards VP, Early A et al (2017) Comparative transcriptomics of elasmobranchs and teleosts highlight important processes in adaptive immunity and regional endothermy. BMC Genomics 18:87

    Article  PubMed  Google Scholar 

  57. Imler JL, Hoffmann JA (2002) Toll receptors in drosophila: a family of molecules regulating development and immunity. Curr Top Microbiol Immunol 270:63–79

    CAS  PubMed  Google Scholar 

  58. Khan I, Maldonado E, Silva L et al (2019) The Vertebrate TLR Supergene Family Evolved Dynamically by Gene Gain/Loss and Positive Selection Revealing a Host–Pathogen Arms Race in Birds. Diversity 11:131

    Article  CAS  Google Scholar 

  59. Andersson SG, Karlberg O, Canbäck B et al (2003) On the origin of mitochondria: a genomics perspective. Philos Trans R Soc B 358:165–177

    Article  CAS  Google Scholar 

  60. Quek ZBR, Chang JJM, Ip YCA et al (2020) Mitogenomes reveal alternative initiation codons and lineage-specific gene order conservation in echinoderms. Mol Biol Evol 38:981–985

    Article  Google Scholar 

  61. Bridges HR, Birrel JA, Hirst J (2011) The mitochondrial-encoded subunits of respiratory complex I (NADH:ubiquinone oxidoreductase): identifying residues important in mechanism and disease. Biochem Soc Trans 39:799–806

    Article  CAS  PubMed  Google Scholar 

  62. Escalona T, Weadick CJ, Antunes A (2017) Adaptive patterns of mitogenome evolution are associated with the loss of shell scutes in turtles. Mol Biol Evol 34:2522–2536

    Article  CAS  PubMed  Google Scholar 

  63. Stuart BP, Cole RJ, Gosser HS (1981) Cocklebur (Xanthium strumarium, L. var. stnrmarium) intoxication in swine: review and redefinition of the toxic principle. Vet Pathol 18:368–383

    Article  CAS  PubMed  Google Scholar 

  64. Pebay-Peyroula E, Dahout-Gonzalez C, Kahn R et al (2003) Structure of mitochondrial ADP/ATP carrier in complex with carboxyatractyloside. Nature 426:39–44

    Article  CAS  PubMed  Google Scholar 

  65. Gilardi JD, Toft CA (2012) Parrots eat nutritious foods despite toxins. PLoS One 7:e38293

    Article  CAS  PubMed  Google Scholar 

  66. Gelabert P, Sandoval-Velasco M, Serres A et al (2020) Evolutionary history, genomic adaptation to toxic diet, and extinction of the Carolina Parakeet. Curr Biol 30:108–114

    Article  CAS  PubMed  Google Scholar 

  67. Mohamed Abd El-Aziz T, Garcia Soares A, Stockand JD (2019) Snake venoms in drug discovery: valuable therapeutic tools for life saving. Toxins 11:564

    Article  PubMed  Google Scholar 

  68. Bordon KCF, Cologna CT, Fornari-Baldo EC et al (2020) From animal poisons and venoms to medicines: achievements, challenges and perspectives in drug discovery. Front Pharmacol 11:1132

    Article  PubMed  Google Scholar 

  69. Fry BG, Udheim EAB, Ali SA et al (2013) Squeezers and leaf-cutters: differential diversification and degeneration of the venom system in toxicoferan reptiles. Proteomics 12:1881–1889

    CAS  Google Scholar 

  70. Sunagar K, Johnson WE, O'Brien SJ et al (2012) Evolution of CRISPs associated with toxicoferan-reptilian venom and mammalian reproduction. Mol Biol Evol 29:1807–1822

    Article  CAS  PubMed  Google Scholar 

  71. Sunagar K, Undheim EA, Scheib H et al (2014) Intraspecific venom variation in the medically significant Southern Pacific Rattlesnake (Crotalus oreganus helleri): biodiscovery, clinical and evolutionary implications. J Proteome 99:68–83

    Article  CAS  Google Scholar 

  72. Low DH, Sunagar K, Undheim EA et al (2013) Dracula’s children: molecular evolution of vampire bat venom. J Proteome 89:95–111

    Article  CAS  Google Scholar 

  73. Nissim I, Dagan-Wiener A, Niv MY (2017) The taste of toxicity: a quantitative analysis of bitter and toxic molecules. IUBMB Life 69:938–946

    Article  CAS  PubMed  Google Scholar 

  74. Li Y, Liu Q, Xu Y et al (2005) The development of taste transduction and taste chip technology. Chin Sci Bull 50:1415–1423

    Article  CAS  Google Scholar 

  75. Lu L, Hu X, Zhu Z (2017) Biomimetic sensors and biosensors for qualitative and quantitative analyses of five basic tastes. TrAC Trends Analyt Chem 87:58–70

    Article  CAS  Google Scholar 

  76. von Molitor E, Riedel K, Hafner M et al (2020) Sensing senses: optical biosensors to study gustation. Sensors 20:1811

    Article  Google Scholar 

  77. Brito NF, Oliveira DS, Santos TS et al (2020) Current and potential biotechnological applications of odorant-binding proteins. Appl Microbiol Biotechnol 104:8631–8648

    Article  CAS  PubMed  Google Scholar 

  78. Chen Z, Zhang Q, Shan J et al (2020) Detection of bitter taste molecules based on odorant-binding protein-modified screen-printed electrodes. ACS Omega 5:27536–27545

    Article  CAS  PubMed  Google Scholar 

  79. Muthukumar S, Rajesh D, Selvam RM et al (2018) Buffalo nasal odorant-binding protein (bunOBP) and its structural evaluation with putative pheromones. Sci Rep 8:9323

    Article  PubMed  Google Scholar 

  80. Sankaran S, Panigrahi S, Mallik S (2011) Odorant binding protein based biomimetic sensors for detection of alcohols associated with salmonella contamination in packaged beef. Biosens Bioelectron 26:3103–3109

    Article  CAS  PubMed  Google Scholar 

  81. Di Pietrantonio F, Benetti M, Cannatà D et al (2015) A surface acoustic wave bio-electronic nose for detection of volatile odorant molecules. Biosens Bioelectron 67:516–523

    Article  PubMed  Google Scholar 

  82. Dimitratos SD, Hommel AS, Konrad KD et al (2019) Biosensors to monitor water quality utilizing insect odorant-binding proteins as detector elements. Biosensors 9:62

    Article  CAS  PubMed  Google Scholar 

  83. Kröber T, Koussis K, Bourquin M et al (2018) Odorant-binding protein-based identification of natural spatial repellents for the African malaria mosquito Anopheles gambiae. Insect Biochem Mol Biol 96:36–50

    Article  PubMed  Google Scholar 

  84. Murphy EJ, Booth JC, Davrazou F et al (2013) Interactions of Anopheles gambiae odorant-binding proteins with a human-derived repellent: implications for the mode of action of N, N-diethyl-3-methylbenzamide (DEET). J Biol Chem 288:4475–7785

    Article  CAS  PubMed  Google Scholar 

  85. Zhu J, Arena S, Spinelli S et al (2017) Reverse chemical ecology: olfactory proteins from the giant panda and their interactions with putative pheromones and bamboo volatiles. Proc Natl Acad Sci U S A 114:E9802–E9810

    Article  CAS  PubMed  Google Scholar 

  86. Swaisgood R, Wang D, Wei F (2016) Ailuropoda melanoleuca (errata version published in 2017). The IUCN Red List of Threatened Species 2016: e.T712A121745669. https://doi.org/10.2305/IUCN.UK.2016-2.RLTS.T712A45033386.en

  87. Umstead A, Soliman AS, Lamp J et al (2020) Validation of recombinant human protein purified from bacteria: an important step to increase scientific rigor. Anal Biochem 611:113999

    Article  CAS  PubMed  Google Scholar 

  88. Seetaraman Amritha TM, Mahajan S, Subramaniam K et al (2020) Cloning, expression and purification of recombinant dermatopontin in Escherichia coli. PLoS One 15:e0242798

    Article  CAS  PubMed  Google Scholar 

  89. Kronqvist N, Sarr M, Lindqvist A et al (2017) Efficient protein production inspired by how spiders make silk. Nat Commun 8:15504

    Article  CAS  PubMed  Google Scholar 

  90. Sutherland TD, Huson MG, Rapson TD (2018) Rational design of new materials using recombinant structural proteins: current state and future challenges. J Struct Biol 201:76–83

    Article  CAS  PubMed  Google Scholar 

  91. Mizutani K, Toyoda M, Otake Y et al (2012) Structural and functional characterization of recombinant medaka fish alpha-amylase expressed in yeast Pichia pastoris. Biochim Biophys Acta 1824:954–962

    Article  CAS  PubMed  Google Scholar 

  92. Esipov RS, Timofeev VI, Sinitsyna EV et al (2018) Three-dimensional structure of recombinant adenine phosphoribosyltransferase from thermophilic bacterial strain Thermus thermophilus HB27. Rus J Bioorg Chem 44:504–510

    Article  CAS  Google Scholar 

  93. Aubin Y, Gingras G, Sauvé S (2008) Assessment of the three-dimensional structure of recombinant protein therapeutics by NMR fingerprinting: demonstration on recombinant human granulocyte macrophage-colony stimulation factor. Anal Chem 80:2623–2627

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

L.S. was supported by a PhD grant from “Fundação para a Ciência e a Tecnologia” (FCT) (SFRH/BD/134565/2017; COVID/BD/151995/2021). A.A. was partially supported by the Strategic Funding UIDB/04423/2020 and UIDP/04423/2020 through national funds provided by FCT and the European Regional Development Fund (ERDF) in the framework of the program PT2020, by the European Structural and Investment Funds (ESIF) through the Competitiveness and Internationalization Operational Program – COMPETE 2020 and by National Funds through the FCT under the project PTDC/CTA-AMB/31774/2017 (POCI-01-0145-FEDER/031774/2017).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Agostinho Antunes .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Silva, L., Antunes, A. (2023). Omics and Remote Homology Integration to Decipher Protein Functionality. In: Filipek, S. (eds) Homology Modeling. Methods in Molecular Biology, vol 2627. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2974-1_4

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2974-1_4

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2973-4

  • Online ISBN: 978-1-0716-2974-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics