Skip to main content
Log in

Comparative analysis of the genomes of two isolates of cowpea aphid-borne mosaic virus (CABMV) obtained from different hosts

  • Brief Report
  • Published:
Archives of Virology Aims and scope Submit manuscript

Abstract

The complete genomic sequences of two cowpea aphid-borne mosaic virus (CABMV) isolates from Brazil, MG-Avr from passion fruit (which also infects cowpea), and BR1 from peanut (which also infects cowpea, but not passion fruit), were determined. Their nucleotide sequences are 89% identical and display 85% identity to that of CABMV-Z. Both isolates have the typical potyvirus genome features. P3 and VPg are the most conserved proteins, with 99% amino acid sequence identity between the two isolates, and P1 is the most variable, with 50% identity. A significant variation exists at the 5’-end of the genome between the Brazilian isolates and CABMV-Z. However, this variation does not correlate with the biological properties of these three isolates.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Adams MJ, Antoniw JF, Beaudoin F (2005) Overview and analysis of the polyprotein cleavage sites in the family Potyviridae. Mol Plant Pathol 6:471–487

    Article  PubMed  CAS  Google Scholar 

  2. Adams MJ, Antoniw JF, Fauquet CM (2005) Molecular criteria for genus and species discrimination within the family Potyviridae. Arch Virol 150:459–479

    Article  PubMed  CAS  Google Scholar 

  3. Atreya PL, Lopez-Moya JJ, Chu MH, Atreya CD, Pirone TP (1995) Mutational analysis of the coat protein N-terminal amino acids involved in potyvirus transmission by aphids. J Gen Virol 76:265–270

    Article  PubMed  CAS  Google Scholar 

  4. Berger PH, Wyatt SD, Shiel PJ, Silbernagel MJ, Druffel K, Mink GI (1997) Phylogenetic analysis of the Potyviridae with emphasis on legume-infecting potyviruses. Arch Virol 142:1979–1999

    Article  PubMed  CAS  Google Scholar 

  5. Blanc S, Lopez Moya JJ, Wang R, Garcia Lampasona S, Thornbury DW, Pirone TP, Wang RY (1997) A specific interaction between coat protein and helper component correlates with aphid transmission of a potyvirus. Virology 231:141–147

    Article  PubMed  CAS  Google Scholar 

  6. Carrington JC, Haldeman R, Dolja VV, Restrepo-Hartwig MA (1993) Internal cleavage and trans-proteolytic activities of the VPg-proteinase (NIa) of tobacco etch potyvirus in vivo. J Virol 67:6995–7000

    PubMed  CAS  Google Scholar 

  7. Chu M, Lopez Moya JJ, Llave Correas C, Pirone TP (1997) Two separate regions in the genome of the tobacco etch virus contain determinants of the wilting response of Tabasco pepper. Mol Plant Microbe Interact 10:472–480

    Article  PubMed  CAS  Google Scholar 

  8. Chung BYW, Miller WA, Atkins JF, Firth AE (2008) An overlapping essential gene in the Potyviridae. Proc Natl Acad Sci USA 105:5897–5902

    Article  PubMed  CAS  Google Scholar 

  9. Decroocq V, Salvador B, Sicard O, Glasa M, Cosson P, Svanella-Dumas L, Revers F, Garcia JA, Candresse T (2009) The determinant of potyvirus ability to overcome the RTM resistance of Arabidopsis thaliana maps to the N-terminal region of the coat protein. Mol Plant Microbe Interact 22:1302–1311

    Article  PubMed  CAS  Google Scholar 

  10. Desbiez C, Girard M, Lecoq H (2010) A novel natural mutation in HC-Pro responsible for mild symptomatology of Zucchini yellow mosaic virus (ZYMV, Potyvirus) in cucurbits. Arch Virol 155:397–401

    Article  PubMed  CAS  Google Scholar 

  11. Eagles RM, Balmorimelian E, Beck DL, Gardner RC, Forster RLS (1994) Characterization of NTPase, RNA-binding and RNA-helicase activities of the cytoplasmic inclusion protein of tamarillo mosaic potyvirus. Eur J Biochem 224:677–684

    Article  PubMed  CAS  Google Scholar 

  12. Eggenberger AL, Hajimorad MR, Hill JH (2008) Gain of virulence on Rsv1-genotype soybean by an avirulent Soybean mosaic virus requires concurrent mutations in both P3 and HC-Pro. Mol Plant Microbe Interact 21:931–936

    Article  PubMed  CAS  Google Scholar 

  13. Fernandez A, Lain S, Garcia JA (1995) RNA helicase activity of the plum pox potyvirus CI protein expressed in Escherichia coli. Mapping of an RNA binding domain. Nucleic Acids Res 23:1327–1332

    Article  PubMed  CAS  Google Scholar 

  14. Gagarinova AG, Babu M, Poysa V, Hill JH, Wang A (2008) Identification and molecular characterization of two naturally occurring Soybean mosaic virus isolates that are closely related but differ in their ability to overcome Rsv4 resistance. Virus Res 138:50–56

    Article  PubMed  CAS  Google Scholar 

  15. Gal-On A (2000) A point mutation in the FRNK motif of the potyvirus helper component-protease gene alters symptom expression in cucurbits and elicits protection against the severe homologous virus. Phytopathology 90:467–473

    Article  PubMed  CAS  Google Scholar 

  16. Hjulsager CK, Olsen BS, Jensen DMK, Cordea MI, Krath BN, Johansen IE, Lund OS (2006) Multiple determinants in the coding region of Pea seed-borne mosaic virus P3 are involved in virulence against sbm-2 resistance. Virology 355:52–61

    Article  PubMed  CAS  Google Scholar 

  17. Hong Y, Hunt AG (1996) RNA polymerase activity catalyzed by a potyvirus-encoded RNA-dependent RNA polymerase. Virology 226:146–151

    Article  PubMed  CAS  Google Scholar 

  18. Iwai H, Yamashita Y, Nishi N, Nakamura M (2006) The potyvirus associated with the dappled fruit of Passiflora edulis in Kagoshima prefecture, Japan, is the third strain of the proposed new species East Asian passiflora virus (EAPV) phylogenetically distinguished from strains of Passion fruit woodiness virus. Arch Virol 151:811–818

    Article  PubMed  CAS  Google Scholar 

  19. Jenner CE, Wang X, Tomimura K, Ohshima K, Ponz F, Walsh JA (2003) The dual role of the potyvirus P3 protein of Turnip mosaic virus as a symptom and avirulence determinant in brassicas. Mol Plant Microbe Interact 16:777–784

    Article  PubMed  CAS  Google Scholar 

  20. Johansen IE, Dougherty WG, Keller KE, Wang D, Hampton RO (1996) Multiple viral determinants affect seed transmission of pea seedborne mosaic virus in Pisum sativum. J Gen Virol 77:3149–3154

    Article  PubMed  CAS  Google Scholar 

  21. Kitajima EW, de Alcantara BK, Madureira PM, Alfenas-Zerbini P, Rezende JAM, Zerbini FM (2008) A mosaic of beach bean (Canavalia rosea) caused by an isolate of cowpea aphid-borne mosaic virus (CABMV) in Brazil. Arch Virol 153:743–747

    Article  PubMed  CAS  Google Scholar 

  22. Krause-Sakate R, Mello RN, Zambolim EM, Pavan MA, Carvalho MG, Le Gall O, Zerbini FM (2001) Molecular characterization of two Brazilian isolates of Lettuce mosaic virus (LMV) with distinct biological properties. Fitopatol Bras 26:153–157

    Article  CAS  Google Scholar 

  23. Krause-Sakate R, Redondo E, Richard-Forget F, Jadao AS, Houvenaghel MC, German-Retana S, Pavan MA, Candresse T, Zerbini FM, Le Gall O (2005) Molecular mapping of the viral determinants of systemic wilting induced by a Lettuce mosaic virus (LMV) isolate in some lettuce cultivars. Virus Res 109:175–180

    Article  PubMed  CAS  Google Scholar 

  24. Laín S, Martin MT, Riechmann JL, García JA (1991) Novel catalytic activity associated with positive-strand RNA virus infection—nucleic acid-stimulated ATPase activity of the plum pox potyvirus helicase-like protein. J Virol 65:1–6

    PubMed  Google Scholar 

  25. Lane LC (1992) A general method for detecting plant viruses. In: Maramorosch K (ed) Plant diseases of viral, viroid, mycoplasma and uncertain origin. Oxford & IBH, New Delhi, pp 3–17

    Google Scholar 

  26. Martín MT, Otin CL, Lain S, García JA (1990) Determination of polyprotein processing sites by amino terminal sequencing of nonstructural proteins encoded by plum pox potyvirus. Virus Res 15:97–106

    Article  PubMed  Google Scholar 

  27. McKern NM, Strike PM, Barnett OW, Dijkstra J, Shukla DD, Ward CW (1994) Cowpea aphid borne mosaic virus-Morocco and South African Passiflora virus are strains of the same potyvirus. Arch Virol 136:207–217

    Article  PubMed  CAS  Google Scholar 

  28. Mlotshwa S, Verver J, Sithole-Niang I, Van Kampen T, Van Kammen A, Wellink J (2002) The genomic sequence of cowpea aphid-borne mosaic virus and its similarities with other potyviruses. Arch Virol 147:1043–1052

    Article  PubMed  CAS  Google Scholar 

  29. Nascimento AVS, Santana EN, Braz ASK, Alfenas PF, Pio-Ribeiro G, Andrade GP, Carvalho MG, Zerbini FM (2006) Cowpea aphid-borne mosaic virus (CABMV) is widespread in passion fruit in Brazil and causes passion fruit woodiness disease. Arch Virol 151:1797–1809

    Article  PubMed  CAS  Google Scholar 

  30. Pio-Ribeiro G, Pappu SS, Pappu HR, Andrade GP, Reddy DVR (2000) Occurrence of cowpea aphid-borne mosaic virus in peanut in Brazil. Plant Dis 84:760–766

    Article  CAS  Google Scholar 

  31. Revers F, Yang SJ, Walter J, Souche S, Lot H, Le Gall O, Candresse T, Dunez J, Le Gall O (1997) Comparison of the complete nucleotide sequences of two isolates of lettuce mosaic virus differing in their biological properties. Virus Res 47:167–177

    Article  PubMed  CAS  Google Scholar 

  32. Saénz P, Cervera MT, Dallot S, Quiot L, Quiot J-B, Riechmann JL, García JA (2000) Identification of a pathogenicity determinant of Plum pox virus in the sequence encoding the C-terminal region of protein p3+6k1. J Gen Virol 81:557–566

    PubMed  Google Scholar 

  33. Salvador B, Delgadillo MO, Saenz P, Garcia JA, Simon-Mateo C (2008) Identification of plum pox virus pathogenicity determinants in herbaceous and woody hosts. Mol Plant Microbe Interact 21:20–29

    Article  PubMed  CAS  Google Scholar 

  34. Tamura K, Dudley J, Nei M, Kumar S (2007) MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol 24:1596–1599

    Article  PubMed  CAS  Google Scholar 

  35. Verchot J, Koonin EV, Carrington JC (1991) The 35 kDa protein from the N-terminus of the potyviral polyprotein functions as the third viral-encoded proteinase. Virology 190:527–535

    Article  Google Scholar 

  36. Wylie SJ, Jones MGK (2011) The complete genome sequence of a Passion fruit woodiness virus isolate from Australia determined using deep sequencing, and its relationship to other potyviruses. Arch Virol 156:479–482. doi:10.1007/s00705-00010-00845-00703

    Google Scholar 

  37. Zhang CQ, Hajimorad MR, Eggenberger AL, Tsang S, Whitham SA, Hill JH (2009) Cytoplasmic inclusion cistron of soybean mosaic virus serves as a virulence determinant on Rsv3-genotype soybean and a symptom determinant. Virology 391:240–248

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by FAPEMIG (CAG 813-99) and CNPq (479625/2001-8) grants to FMZ. DRB and JEABJ were funded by CAPES scholarships. PAZ was funded by a CNPq post-doctoral fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Murilo Zerbini.

Additional information

The sequences reported in this paper have been deposited in the GenBank database under the accession numbers HQ880242 (CABMV-BR1) and HQ880243 (CABMV-MG-Avr).

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 73 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barros, D.R., Alfenas-Zerbini, P., Beserra, J.E.A. et al. Comparative analysis of the genomes of two isolates of cowpea aphid-borne mosaic virus (CABMV) obtained from different hosts. Arch Virol 156, 1085–1091 (2011). https://doi.org/10.1007/s00705-011-0962-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00705-011-0962-7

Keywords

Navigation