Skip to main content

Specificities of Protein Homology Modeling for Allosteric Drug Design

  • Protocol
  • First Online:
Homology Modeling

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2627))

  • 590 Accesses

Abstract

The allosteric binding sites are usually located in the flexible areas of proteins, which are hardly visible in the crystal structures. However, there are notable exceptions like allosteric sites in receptors in class B and C of GPCRs, which are located within a well-defined bundle of transmembrane helices. Class B and C evolved from class A and even after swapping of orthosteric and allosteric sites the central binding site persisted and it can be used for easy design of allosteric drugs. However, studying the ligand binding to the allosteric sites in the most populated class A of GPCRs is still a challenge, since they are located mostly in unresolved parts of the receptor’s structure, and especially N-terminus. This chapter provides an example of cannabinoid CB1 receptor N-terminal homology modeling, ligand-guided modeling of the allosteric site in GABA receptor, as well as C-linker modeling in the potassium ion channels where the allosteric phospholipid ligand PIP2 is bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Motlagh HN, Wrabl JO, Li J et al (2014) The ensemble nature of allostery. Nature 508:331–339. https://doi.org/10.1038/nature13001

    Article  CAS  PubMed  Google Scholar 

  2. Gentry PR, Sexton PM, Christopoulos A (2015) Novel allosteric modulators of G protein-coupled receptors. J Biol Chem 290:19478–19488. https://doi.org/10.1074/jbc.R115.662759

    Article  CAS  PubMed  Google Scholar 

  3. Conn PJ, Christopoulos A, Lindsley CW (2009) Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 8:41–54. https://doi.org/10.1038/nrd2760

    Article  CAS  PubMed  Google Scholar 

  4. Brogi S, Tafi A, Desaubry L et al (2014) Discovery of GPCR ligands for probing signal transduction pathways. Front Pharmacol 5:255. https://doi.org/10.3389/fphar.2014.00255

    Article  CAS  PubMed  Google Scholar 

  5. Christopoulos A, Changeux JP, Catterall WA et al (2014) International Union of Basic and Clinical Pharmacology. XC. multisite pharmacology: recommendations for the nomenclature of receptor allosterism and allosteric ligands. Pharmacol Rev 66:918–947. https://doi.org/10.1124/pr.114.008862

    Article  CAS  PubMed  Google Scholar 

  6. Stasiulewicz A, Znajdek K, Grudzien M et al (2020) A guide to targeting the endocannabinoid system in drug design. Int J Mol Sci 21:2778. https://doi.org/10.3390/ijms21082778

  7. Howlett AC, Breivogel CS, Childers SR et al (2004) Cannabinoid physiology and pharmacology: 30 years of progress. Neuropharmacology 47(Suppl 1):345–358. https://doi.org/10.1016/j.neuropharm.2004.07.030

    Article  CAS  PubMed  Google Scholar 

  8. Salmaso V, Jacobson KA (2020) In Silico drug design for Purinergic GPCRs: overview on molecular dynamics applied to adenosine and P2Y receptors. Biomolecules 10:812. https://doi.org/10.3390/biom10060812

  9. Deganutti G, Cuzzolin A, Ciancetta A et al (2015) Understanding allosteric interactions in G protein-coupled receptors using Supervised Molecular Dynamics: a prototype study analysing the human A3 adenosine receptor positive allosteric modulator LUF6000. Bioorg Med Chem 23:4065–4071. https://doi.org/10.1016/j.bmc.2015.03.039

    Article  CAS  PubMed  Google Scholar 

  10. Jakowiecki J, Abel R, Orzel U et al (2021) Allosteric modulation of the CB1 cannabinoid receptor by Cannabidiol-A molecular modeling study of the N-terminal domain and the allosteric-Orthosteric coupling. Molecules 26:2456. https://doi.org/10.3390/molecules26092456

    Article  CAS  PubMed  Google Scholar 

  11. Krieger E, Vriend G (2015) New ways to boost molecular dynamics simulations. J Comput Chem 36:996–1007. https://doi.org/10.1002/jcc.23899

    Article  CAS  PubMed  Google Scholar 

  12. Mandell DJ, Coutsias EA, Kortemme T (2009) Sub-angstrom accuracy in protein loop reconstruction by robotics-inspired conformational sampling. Nat Methods 6:551–552. https://doi.org/10.1038/nmeth0809-551

    Article  CAS  PubMed  Google Scholar 

  13. Salomon-Ferrer R, Case DA, Walker RC (2013) An overview of the Amber biomolecular simulation package. WIREs Comput Mol Sci 3:198–210. https://doi.org/10.1002/wcms.1121

    Article  CAS  Google Scholar 

  14. Phillips JC, Hardy DJ, Maia JDC et al (2020) Scalable molecular dynamics on CPU and GPU architectures with NAMD. J Chem Phys 153:044130. https://doi.org/10.1063/5.0014475

    Article  CAS  PubMed  Google Scholar 

  15. Huang J, Rauscher S, Nawrocki G et al (2017) CHARMM36m: an improved force field for folded and intrinsically disordered proteins. Nat Methods 14:71–73. https://doi.org/10.1038/nmeth.4067

    Article  CAS  PubMed  Google Scholar 

  16. UniProt C (2019) UniProt: a worldwide hub of protein knowledge. Nucleic Acids Res 47:D506–D515. https://doi.org/10.1093/nar/gky1049

    Article  CAS  Google Scholar 

  17. Canutescu AA, Dunbrack RL Jr (2003) Cyclic coordinate descent: a robotics algorithm for protein loop closure. Protein Sci 12:963–972. https://doi.org/10.1110/ps.0242703

    Article  CAS  PubMed  Google Scholar 

  18. Jo S, Jiang W (2015) A generic implementation of replica exchange with solute tempering (REST2) algorithm in NAMD for complex biophysical simulations. Comput Phys Commun 197:304–311. https://doi.org/10.1016/j.cpc.2015.08.030

    Article  CAS  Google Scholar 

  19. Jo S, Kim T, Iyer VG et al (2008) CHARMM-GUI: a web-based graphical user interface for CHARMM. J Comput Chem 29:1859–1865. https://doi.org/10.1002/jcc.20945

    Article  CAS  PubMed  Google Scholar 

  20. Tunyasuvunakool K, Adler J, Wu Z et al (2021) Highly accurate protein structure prediction for the human proteome. Nature 596:590–596. https://doi.org/10.1038/s41586-021-03828-1

    Article  CAS  PubMed  Google Scholar 

  21. Jumper J, Evans R, Pritzel A et al (2021) Highly accurate protein structure prediction with AlphaFold. Nature 596:583–589. https://doi.org/10.1038/s41586-021-03819-2

    Article  CAS  PubMed  Google Scholar 

  22. Freyd T, Warszycki D, Mordalski S et al (2017) Ligand-guided homology modelling of the GABAB2 subunit of the GABAB receptor. PLoS One 12:e0173889. https://doi.org/10.1371/journal.pone.0173889

    Article  CAS  PubMed  Google Scholar 

  23. Evenseth LSM, Gabrielsen M, Sylte I (2020) The GABAB receptor-structure, ligand binding and drug development. Molecules 25:3093. https://doi.org/10.3390/molecules25133093

  24. Mao C, Shen C, Li C et al (2020) Cryo-EM structures of inactive and active GABAB receptor. Cell Res 30:564–573. https://doi.org/10.1038/s41422-020-0350-5

  25. Foster DJ, Conn PJ (2017) Allosteric modulation of GPCRs: new insights and potential utility for treatment of Schizophrenia and other CNS disorders. Neuron 94:431–446. https://doi.org/10.1016/j.neuron.2017.03.016

    Article  CAS  PubMed  Google Scholar 

  26. Webb B, Sali A (2017) Protein structure modeling with MODELLER. Methods Mol Biol 1654:39–54. https://doi.org/10.1007/978-1-4939-7231-9_4

    Article  CAS  PubMed  Google Scholar 

  27. McRobb FM, Capuano B, Crosby IT et al (2010) Homology modeling and docking evaluation of aminergic G protein-coupled receptors. J Chem Inf Model 50:626–637. https://doi.org/10.1021/ci900444q

    Article  CAS  PubMed  Google Scholar 

  28. Toro L, Li M, Zhang Z et al (2014) MaxiK channel and cell signalling. Pflugers Arch 466:875–886. https://doi.org/10.1007/s00424-013-1359-0

    Article  CAS  PubMed  Google Scholar 

  29. Lu R, Alioua A, Kumar Y et al (2006) MaxiK channel partners: physiological impact. J Physiol 570:65–72. https://doi.org/10.1113/jphysiol.2005.098913

    Article  CAS  PubMed  Google Scholar 

  30. Bentzen BH, Olesen SP, Ronn LC et al (2014) BK channel activators and their therapeutic perspectives. Front Physiol 5:389. https://doi.org/10.3389/fphys.2014.00389

    Article  PubMed  Google Scholar 

  31. Hou S, Heinemann SH, Hoshi T (2009) Modulation of BKCa channel gating by endogenous signaling molecules. Physiology (Bethesda) 24:26–35. https://doi.org/10.1152/physiol.00032.2008

    Article  CAS  PubMed  Google Scholar 

  32. Tang QY, Zhang Z, Meng XY et al (2014) Structural determinants of phosphatidylinositol 4,5-bisphosphate (PIP2) regulation of BK channel activity through the RCK1 Ca2+ coordination site. J Biol Chem 289:18860–18872. https://doi.org/10.1074/jbc.M113.538033

    Article  CAS  PubMed  Google Scholar 

  33. Hansen SB, Tao X, MacKinnon R (2011) Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477:495–498. https://doi.org/10.1038/nature10370

    Article  CAS  PubMed  Google Scholar 

  34. Stansfeld PJ, Hopkinson R, Ashcroft FM et al (2009) PIP(2)-binding site in Kir channels: definition by multiscale biomolecular simulations. Biochemistry 48:10926–10933. https://doi.org/10.1021/bi9013193

    Article  CAS  PubMed  Google Scholar 

  35. Li J, Lu S, Liu Y et al (2015) Identification of the conformational transition pathway in PIP2 opening Kir channels. Sci Rep 5:11289. https://doi.org/10.1038/srep11289

    Article  CAS  PubMed  Google Scholar 

  36. Truchon JF, Bayly CI (2007) Evaluating virtual screening methods: good and bad metrics for the "early recognition" problem. J Chem Inf Model 47:488–508. https://doi.org/10.1021/ci600426e

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir Filipek .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Jakowiecki, J., Orzeł, U., Gliździnska, A., Możajew, M., Filipek, S. (2023). Specificities of Protein Homology Modeling for Allosteric Drug Design. In: Filipek, S. (eds) Homology Modeling. Methods in Molecular Biology, vol 2627. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2974-1_19

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2974-1_19

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2973-4

  • Online ISBN: 978-1-0716-2974-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics