Skip to main content

Advertisement

Log in

MaxiK channel and cell signalling

  • Invited Review
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The large-conductance Ca2+- and voltage-activated K+ (MaxiK, BK, BKCa, Slo1, KCa1.1) channel role in cell signalling is becoming apparent as we learn how the channel interacts with a multiplicity of proteins not only at the plasma membrane but also in intracellular organelles including the endoplasmic reticulum, nucleus, and mitochondria. In this review, we focus on the interactions of MaxiK channels with seven-transmembrane G protein-coupled receptors and discuss information suggesting that, the channel big C-terminus may act as the nucleus of signalling molecules including kinases relevant for cell death and survival. Increasing evidence indicates that the channel is able to associate with a variety of receptors including β-adrenergic receptors, G protein-coupled estrogen receptors, acetylcholine receptors, thromboxane A2 receptors, and angiotensin II receptors, which highlights the varied functions that the channel has (or may have) not only in regulating contraction/relaxation of muscle cells or neurotransmission in the brain but also in cell metabolism, proliferation, migration, and gene expression. In line with this view, MaxiK channels have been implicated in obesity and in brain, prostate, and mammary cancers. A better understanding on the molecular mechanisms underlying or triggered by MaxiK channel abnormalities like overexpression in certain cancers may lead to new therapeutics to prevent devastating diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Alioua A, Li M, Wu Y, Stefani E, Toro L (2011) Unconventional myristoylation of large-conductance Ca(2)-activated K channel (Slo1) via serine/threonine residues regulates channel surface expression. Proc Natl Acad Sci U S A 108:10744–10749

    PubMed Central  PubMed  CAS  Google Scholar 

  2. Alioua A, Lu R, Kumar Y, Eghbali M, Kundu P, Toro L, Stefani E (2008) Slo1 caveolin-binding motif, a mechanism of caveolin-1–Slo1 interaction regulating Slo1 surface expression. J Biol Chem 283:4808–4817

    PubMed  CAS  Google Scholar 

  3. Almassy J, Begenisich T (2012) The LRRC26 protein selectively alters the efficacy of BK channel activators. Mol Pharmacol 81:21–30

    PubMed Central  PubMed  CAS  Google Scholar 

  4. Aon MA, Cortassa S, Wei AC, Grunnet M, O'Rourke B (2010) Energetic performance is improved by specific activation of K+ fluxes through K(Ca) channels in heart mitochondria. Biochim Biophys Acta 1797:71–80

    PubMed Central  PubMed  CAS  Google Scholar 

  5. Barlowe C (2003) Signals for COPII-dependent export from the ER: what's the ticket out? Trends Cell Biol 13:295–300

    PubMed  CAS  Google Scholar 

  6. Bednarczyk P, Wieckowski MR, Broszkiewicz M, Skowronek K, Siemen D, Szewczyk A (2013) Putative structural and functional coupling of the mitochondrial BK channel to the respiratory chain. PLoS One 8:e68125

    PubMed Central  PubMed  CAS  Google Scholar 

  7. Bell TJ, Miyashiro KY, Sul JY, Buckley PT, Lee MT, McCullough R, Jochems J, Kim J, Cantor CR, Parsons TD, Eberwine JH (2010) Intron retention facilitates splice variant diversity in calcium-activated big potassium channel populations. Proc Natl Acad Sci U S A 107:21152–21157

    PubMed Central  PubMed  CAS  Google Scholar 

  8. Bell TJ, Miyashiro KY, Sul JY, McCullough R, Buckley PT, Jochems J, Meaney DF, Haydon P, Cantor C, Parsons TD, Eberwine J (2008) Cytoplasmic BK(Ca) channel intron-containing mRNAs contribute to the intrinsic excitability of hippocampal neurons. Proc Natl Acad Sci U S A 105:1901–1906

    PubMed Central  PubMed  CAS  Google Scholar 

  9. Bloch M, Ousingsawat J, Simon R, Schraml P, Gasser TC, Mihatsch MJ, Kunzelmann K, Bubendorf L (2007) KCNMA1 gene amplification promotes tumor cell proliferation in human prostate cancer. Oncogene 26:2525–2534

    PubMed  CAS  Google Scholar 

  10. Bopassa JC, Eghbali M, Toro L, Stefani E (2010) A novel estrogen receptor GPER inhibits mitochondria permeability transition pore opening and protects the heart against ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 298:H16–H23

    PubMed Central  PubMed  CAS  Google Scholar 

  11. Chen L, Jeffries O, Rowe IC, Liang Z, Knaus HG, Ruth P, Shipston MJ (2010) Membrane trafficking of large conductance calcium-activated potassium channels is regulated by alternative splicing of a transplantable, acidic trafficking motif in the RCK1-RCK2 linker. J Biol Chem 285:23265–23275

    PubMed Central  PubMed  CAS  Google Scholar 

  12. Cibulsky SM, Fei H, Levitan IB (2005) Syntaxin-1A binds to and modulates the Slo calcium-activated potassium channel via an interaction that excludes syntaxin binding to calcium channels. J Neurophysiol 93:1393–1405

    PubMed  CAS  Google Scholar 

  13. Cole WC, Sanders KM (1989) G proteins mediate suppression of Ca2+-activated K current by acetylcholine in smooth muscle cells. Am J Physiol 257:C596–C600

    PubMed  CAS  Google Scholar 

  14. Davies KP, Stanevsky Y, Tar MT, Chang JS, Chance MR, Melman A (2007) Ageing causes cytoplasmic retention of MaxiK channels in rat corporal smooth muscle cells. Int J Impot Res 19:371–377

    PubMed Central  PubMed  CAS  Google Scholar 

  15. Deschamps AM, Murphy E (2009) Activation of a novel estrogen receptor, GPER, is cardioprotective in male and female rats. Am J Physiol Heart Circ Physiol 297:H1806–H1813

    PubMed Central  PubMed  CAS  Google Scholar 

  16. Du W, Bautista JF, Yang H, Diez-Sampedro A, You SA, Wang L, Kotagal P, Luders HO, Shi J, Cui J, Richerson GB, Wang QK (2005) Calcium-sensitive potassium channelopathy in human epilepsy and paroxysmal movement disorder. Nat Genet 37:733–738

    PubMed  CAS  Google Scholar 

  17. Eto H, Miyata M, Shirasawa T, Akasaki Y, Hamada N, Nagaki A, Orihara K, Biro S, Tei C (2008) The long-term effect of angiotensin II type 1a receptor deficiency on hypercholesterolemia-induced atherosclerosis. Hypertens Res 31:1631–1642

    PubMed  CAS  Google Scholar 

  18. Francois H, Athirakul K, Mao L, Rockman H, Coffman TM (2004) Role for thromboxane receptors in angiotensin-II-induced hypertension. Hypertension 43:364–369

    PubMed  CAS  Google Scholar 

  19. Francois H, Makhanova N, Ruiz P, Ellison J, Mao L, Rockman HA, Coffman TM (2008) A role for the thromboxane receptor in L-NAME hypertension. Am J Physiol Ren Physiol 295:F1096–F1102

    CAS  Google Scholar 

  20. Ge L, Hoa NT, Cornforth AN, Bota DA, Mai A, Kim DI, Chiou SK, Hickey MJ, Kruse CA, Jadus MR (2012) Glioma big potassium channel expression in human cancers and possible T cell epitopes for their immunotherapy. J Immunol 189:2625–2634

    PubMed Central  PubMed  CAS  Google Scholar 

  21. Hou S, Heinemann SH, Hoshi T (2009) Modulation of BKCa channel gating by endogenous signaling molecules. Physiology (Bethesda) 24:26–35

    CAS  Google Scholar 

  22. Jiao H, Arner P, Hoffstedt J, Brodin D, Dubern B, Czernichow S, van't Hooft F, Axelsson T, Pedersen O, Hansen T, Sorensen TI, Hebebrand J, Kere J, Dahlman-Wright K, Hamsten A, Clement K, Dahlman I (2011) Genome wide association study identifies KCNMA1 contributing to human obesity. BMC Med Genet 4:51

    CAS  Google Scholar 

  23. Jo S, Lee KH, Song S, Jung YK, Park CS (2005) Identification and functional characterization of cereblon as a binding protein for large-conductance calcium-activated potassium channel in rat brain. J Neurochem 94:1212–1224

    PubMed  CAS  Google Scholar 

  24. Kathiresan T, Harvey M, Orchard S, Sakai Y, Sokolowski B (2009) A protein interaction network for the large conductance Ca(2+)-activated K(+) channel in the mouse cochlea. Mol Cell Proteomics 8:1972–1987

    PubMed Central  PubMed  CAS  Google Scholar 

  25. Kim EY, Choi KJ, Dryer SE (2008) Nephrin binds to the COOH terminus of a large-conductance Ca2+-activated K+ channel isoform and regulates its expression on the cell surface. Am J Physiol Ren Physiol 295:F235–F246

    CAS  Google Scholar 

  26. Kim EY, Ridgway LD, Zou S, Chiu YH, Dryer SE (2007) Alternatively spliced C-terminal domains regulate the surface expression of large conductance calcium-activated potassium channels. Neuroscience 146:1652–1661

    PubMed Central  PubMed  CAS  Google Scholar 

  27. Kume H, Graziano MP, Kotlikoff MI (1992) Stimulatory and inhibitory regulation of calcium-activated potassium channels by guanine nucleotide-binding proteins. Proc Natl Acad Sci U S A 89:11051–11055

    PubMed Central  PubMed  CAS  Google Scholar 

  28. Kume H, Hall IP, Washabau RJ, Takagi K, Kotlikoff MI (1994) β-Adrenergic agonists regulate KCa channels in airway smooth muscle by cAMP-dependent and -independent mechanisms. J Clin Invest 93:371–379

    PubMed Central  PubMed  CAS  Google Scholar 

  29. Kume H, Kotlikoff MI (1991) Muscarinic inhibition of single KCa channels in smooth muscle cells by a pertussis-sensitive G protein. Am J Physiol 261:C1204–C1209

    PubMed  CAS  Google Scholar 

  30. Kwan HY, Shen B, Ma X, Kwok YC, Huang Y, Man YB, Yu S, Yao X (2009) TRPC1 associates with BK(Ca) channel to form a signal complex in vascular smooth muscle cells. Circ Res 104:670–678

    PubMed  CAS  Google Scholar 

  31. Kwon SH, Guggino WB (2004) Multiple sequences in the C terminus of MaxiK channels are involved in expression, movement to the cell surface, and apical localization. Proc Natl Acad Sci U S A 101:15237–15242

    PubMed Central  PubMed  CAS  Google Scholar 

  32. Laumonnier F, Roger S, Guerin P, Molinari F, M'rad R, Cahard D, Belhadj A, Halayem M, Persico AM, Elia M, Romano V, Holbert S, Andres C, Chaabouni H, Colleaux L, Constant J, Le Guennec JY, Briault S (2006) Association of a functional deficit of the BKCa channel, a synaptic regulator of neuronal excitability, with autism and mental retardation. Am J Psychiatry 163:1622–1629

    PubMed  Google Scholar 

  33. Lesage F, Hibino H, Hudspeth AJ (2004) Association of beta-catenin with the alpha-subunit of neuronal large-conductance Ca2+-activated K+ channels. Proc Natl Acad Sci U S A 101:671–675

    PubMed Central  PubMed  CAS  Google Scholar 

  34. Li J, Al-Khalili O, Ramosevac S, Eaton DC, Denson DD (2010) Protein–protein interaction between cPLA2 and splice variants of alpha-subunit of BK channels. Am J Physiol Cell Physiol 298:C251–C262

    PubMed Central  PubMed  CAS  Google Scholar 

  35. Li M, Tanaka Y, Alioua A, Wu Y, Lu R, Kundu P, Sanchez-Pastor E, Marijic J, Stefani E, Toro L (2010) Thromboxane A2 receptor and MaxiK-channel intimate interaction supports channel trans-inhibition independent of G-protein activation. Proc Natl Acad Sci U S A 107:19096–19101

    PubMed Central  PubMed  CAS  Google Scholar 

  36. Li M, Zhang Z, Koh H, Lu R, Jiang Z, Alioua A, Garcia-Valdes J, Stefani E, Toro L (2013) The beta1-subunit of the MaxiK channel associates with the thromboxane A2 receptor and reduces thromboxane A2 functional effects. J Biol Chem 288:3668–3677

    PubMed Central  PubMed  CAS  Google Scholar 

  37. Lim HH, Park CS (2005) Identification and functional characterization of ankyrin-repeat family protein ANKRA as a protein interacting with BKCa channel. Mol Biol Cell 16:1013–1025

    PubMed Central  PubMed  CAS  Google Scholar 

  38. Liu X, Chang Y, Reinhart PH, Sontheimer H, Chang Y (2002) Cloning and characterization of glioma BK, a novel BK channel isoform highly expressed in human glioma cells. J Neurosci 22:1840–1849

    PubMed  CAS  Google Scholar 

  39. Liu G, Shi J, Yang L, Cao L, Park SM, Cui J, Marx SO (2004) Assembly of a Ca(2+)-dependent BK channel signaling complex by binding to beta2 adrenergic receptor. EMBO J 23:2196–2205

    PubMed Central  PubMed  CAS  Google Scholar 

  40. Loot AE, Moneke I, Keseru B, Oelze M, Syzonenko T, Daiber A, Fleming I (2012) 11,12-EET stimulates the association of BK channel alpha and beta(1) subunits in mitochondria to induce pulmonary vasoconstriction. PLoS One 7:e46065

    PubMed Central  PubMed  CAS  Google Scholar 

  41. Lu R, Alioua A, Kumar Y, Eghbali M, Stefani E, Toro L (2006) MaxiK channel partners: physiological impact. J Physiol 570:65–72

    PubMed Central  PubMed  CAS  Google Scholar 

  42. Lu T, Zhang DM, Wang XL, He T, Wang RX, Chai Q, Katusic ZS, Lee HC (2010) Regulation of coronary arterial BK channels by caveolae-mediated angiotensin II signaling in diabetes mellitus. Circ Res 106:1164–1173

    PubMed Central  PubMed  CAS  Google Scholar 

  43. Ma D, Nakata T, Zhang G, Hoshi T, Li M, Shikano S (2007) Differential trafficking of carboxyl isoforms of Ca2+-gated (Slo1) potassium channels. FEBS Lett 581:1000–1008

    PubMed Central  PubMed  CAS  Google Scholar 

  44. Ma D, Zerangue N, Lin YF, Collins A, Yu M, Jan YN, Jan LY (2001) Role of ER export signals in controlling surface potassium channel numbers. Science 291:316–319

    PubMed  CAS  Google Scholar 

  45. Meera P, Wallner M, Jiang Z, Toro L (1996) A calcium switch for the functional coupling between α (hslo) and β subunits (K V, Ca β) of maxi K channels. FEBS Lett 382:84–88

    PubMed  CAS  Google Scholar 

  46. Meera P, Wallner M, Song M, Toro L (1997) Large conductance voltage- and calcium-dependent K+ channel, a distinct member of voltage-dependent ion channels with seven N-terminal transmembrane segments (S0–S6), an extracellular N terminus, and an intracellular (S9–S10) C terminus. Proc Natl Acad Sci U S A 94:14066–14071

    PubMed Central  PubMed  CAS  Google Scholar 

  47. Meera P, Wallner M, Toro L (2000) A neuronal beta subunit (KCNMB4) makes the large conductance, voltage- and Ca2+-activated K+ channel resistant to charybdotoxin and iberiotoxin. Proc Natl Acad Sci U S A 97:5562–5567

    PubMed Central  PubMed  CAS  Google Scholar 

  48. Meredith AL, Thorneloe KS, Werner ME, Nelson MT, Aldrich RW (2004) Overactive bladder and incontinence in the absence of the BK large conductance Ca2+-activated K+ channel. J Biol Chem 279:36746–36752

    PubMed  CAS  Google Scholar 

  49. Meredith AL, Wiler SW, Miller BH, Takahashi JS, Fodor AA, Ruby NF, Aldrich RW (2006) BK calcium-activated potassium channels regulate circadian behavioral rhythms and pacemaker output. Nat Neurosci 9:1041–1049

    PubMed Central  PubMed  CAS  Google Scholar 

  50. Morera FJ, Alioua A, Kundu P, Salazar M, Gonzalez C, Martinez AD, Stefani E, Toro L, Latorre R (2012) The first transmembrane domain (TM1) of beta2-subunit binds to the transmembrane domain S1 of alpha-subunit in BK potassium channels. FEBS Lett 586:2287–2293

    PubMed Central  PubMed  CAS  Google Scholar 

  51. Nara M, Dhulipala PD, Wang YX, Kotlikoff MI (1998) Reconstitution of beta-adrenergic modulation of large conductance, calcium-activated potassium (maxi-K) channels in Xenopus oocytes. Identification of the camp-dependent protein kinase phosphorylation site. J Biol Chem 273:14920–14924

    PubMed  CAS  Google Scholar 

  52. Nilsson BO, Olde B, Leeb-Lundberg LM (2011) G protein-coupled oestrogen receptor 1 (GPER1)/GPR30: a new player in cardiovascular and metabolic oestrogenic signalling. Br J Pharmacol 163:1131–1139

    PubMed Central  PubMed  CAS  Google Scholar 

  53. Oeggerli M, Tian Y, Ruiz C, Wijker B, Sauter G, Obermann E, Guth U, Zlobec I, Sausbier M, Kunzelmann K, Bubendorf L (2012) Role of KCNMA1 in breast cancer. PLoS One 7:e41664

    PubMed Central  PubMed  CAS  Google Scholar 

  54. Ou JW, Kumar Y, Alioua A, Sailer C, Stefani E, Toro L (2009) Ca2+- and thromboxane-dependent distribution of MaxiK channels in cultured astrocytes: from microtubules to the plasma membrane. Glia 57:1280–1295

    PubMed Central  PubMed  CAS  Google Scholar 

  55. Park SM, Liu G, Kubal A, Fury M, Cao L, Marx SO (2004) Direct interaction between BKCa potassium channel and microtubule-associated protein 1A. FEBS Lett 570:143–148

    PubMed  CAS  Google Scholar 

  56. Pérez G, Toro L (1994) Differential modulation of large-conductance KCa channels by PKA in pregnant and nonpregnant myometrium. Am J Physiol Cell Physiol 266:C1459–C1463

    Google Scholar 

  57. Pietrzykowski AZ, Friesen RM, Martin GE, Puig SI, Nowak CL, Wynne PM, Siegelmann HT, Treistman SN (2008) Posttranscriptional regulation of BK channel splice variant stability by miR-9 underlies neuroadaptation to alcohol. Neuron 59:274–287

    PubMed Central  PubMed  CAS  Google Scholar 

  58. Rezzonico R, Cayatte C, Bourget-Ponzio I, Romey G, Belhacene N, Loubat A, Rocchi S, Van Obberghen E, Girault JA, Rossi B, Schmid-Antomarchi H (2003) Focal adhesion kinase pp125FAK interacts with the large conductance calcium-activated hSlo potassium channel in human osteoblasts: potential role in mechanotransduction. J Bone Miner Res 18:1863–1871

    PubMed  CAS  Google Scholar 

  59. Rezzonico R, Schmid-Alliana A, Romey G, Bourget-Ponzio I, Breuil V, Breittmayer V, Tartare-Deckert S, Rossi B, Schmid-Antomarchi H (2002) Prostaglandin E2 induces interaction between hSlo potassium channel and Syk tyrosine kinase in osteosarcoma cells. J Bone Miner Res 17:869–878

    PubMed  CAS  Google Scholar 

  60. Ridgway LD, Kim EY, Dryer SE (2009) MAGI-1 interacts with Slo1 channel proteins and suppresses Slo1 expression on the cell surface. Am J Physiol Cell Physiol 297:C55–C65

    PubMed Central  PubMed  CAS  Google Scholar 

  61. Rosenblatt KP, Sun ZP, Heller S, Hudspeth AJ (1997) Distribution of Ca2+-activated K+ channel isoforms along the tonotopic gradient of the chicken's cochlea. Neuron 19:1061–1075

    PubMed  CAS  Google Scholar 

  62. Ruttiger L, Sausbier M, Zimmermann U, Winter H, Braig C, Engel J, Knirsch M, Arntz C, Langer P, Hirt B, Muller M, Kopschall I, Pfister M, Munkner S, Rohbock K, Pfaff I, Rusch A, Ruth P, Knipper M (2004) Deletion of the Ca2+-activated potassium (BK) alpha-subunit but not the BKbeta1-subunit leads to progressive hearing loss. Proc Natl Acad Sci U S A 101:12922–12927

    PubMed Central  PubMed  Google Scholar 

  63. Sausbier M, Arntz C, Bucurenciu I, Zhao H, Zhou XB, Sausbier U, Feil S, Kamm S, Essin K, Sailer CA, Abdullah U, Krippeit-Drews P, Feil R, Hofmann F, Knaus HG, Kenyon C, Shipston MJ, Storm JF, Neuhuber W, Korth M, Schubert R, Gollasch M, Ruth P (2005) Elevated blood pressure linked to primary hyperaldosteronism and impaired vasodilation in BK channel-deficient mice. Circulation 112:60–68

    PubMed  CAS  Google Scholar 

  64. Scornik FS, Codina J, Birnbaumer L, Toro L (1993) Modulation of coronary smooth muscle KCa channels by Gsα independent of phosphorylation by protein kinase A. Am J Physiol 265:H1460–H1465

    PubMed  CAS  Google Scholar 

  65. Scornik FS, Toro L (1992) U46619, a thromboxane A2 agonist, inhibits KCa channel activity from pig coronary artery. Am J Physiol 262:C708–C713

    PubMed  CAS  Google Scholar 

  66. Shikano K, Berkowitz BA (1987) Endothelium-derived relaxing factor is a selective relaxant of vascular smooth muscle. J Pharmacol Exp Ther 243:55–60

    PubMed  CAS  Google Scholar 

  67. Siemen D, Loupatatzis C, Borecky J, Gulbins E, Lang F (1999) Ca2+-activated K channel of the BK-type in the inner mitochondrial membrane of a human glioma cell line. Biochem Biophys Res Commun 257:549–554

    PubMed  CAS  Google Scholar 

  68. Singh H, Lu R, Bopassa JC, Meredith AL, Stefani E, Toro L (2013) mitoBKCa is encoded by the Kcnma1 gene, and a splicing sequence defines its mitochondrial location. Proc Natl Acad Sci U S A 110:10836–10841

    PubMed Central  PubMed  CAS  Google Scholar 

  69. Singh H, Lu R, Rodriguez PF, Wu Y, Bopassa JC, Stefani E, Toro L (2012) Visualization and quantification of cardiac mitochondrial protein clusters with STED microscopy. Mitochondrion 12:230–236

    PubMed Central  PubMed  CAS  Google Scholar 

  70. Singh H, Stefani E, Toro L (2012) Intracellular BK(Ca) (iBK(Ca)) channels. J Physiol 590:5937–5947

    PubMed Central  PubMed  CAS  Google Scholar 

  71. Sokolowski S, Harvey M, Sakai Y, Jordan A, Sokolowski B (2012) The large conductance calcium-activated K(+) channel interacts with the small GTPase Rab11b. Biochem Biophys Res Commun 426:221–225

    PubMed Central  PubMed  CAS  Google Scholar 

  72. Sokolowski B, Orchard S, Harvey M, Sridhar S, Sakai Y (2011) Conserved BK channel–protein interactions reveal signals relevant to cell death and survival. PLoS One 6:e28532

    PubMed Central  PubMed  CAS  Google Scholar 

  73. Tatro E, Hefler S, Shumaker-Armstrong S, Soontornniyomkij B, Yang M, Yermanos A, Wren N, Moore D, Achim C (2013) Modulation of BK channel by microRNA-9 in neurons after exposure to HIV and methamphetamine. J Neuroimmune Pharmacol. doi: 10.1007/s11481-013-9446-8

  74. Tian L, Chen L, McClafferty H, Sailer CA, Ruth P, Knaus HG, Shipston MJ (2006) A noncanonical SH3 domain binding motif links BK channels to the actin cytoskeleton via the SH3 adapter cortactin. FASEB J 20:2588–2590

    PubMed  CAS  Google Scholar 

  75. Tian L, Coghill LS, MacDonald SH, Armstrong DL, Shipston MJ (2003) Leucine zipper domain targets cAMP-dependent protein kinase to mammalian BK channels. J Biol Chem 278:8669–8677

    PubMed  CAS  Google Scholar 

  76. Tian L, Coghill LS, McClafferty H, MacDonald SH, Antoni FA, Ruth P, Knaus HG, Shipston MJ (2004) Distinct stoichiometry of BKCa channel tetramer phosphorylation specifies channel activation and inhibition by cAMP-dependent protein kinase. Proc Natl Acad Sci U S A 101:11897–11902

    PubMed Central  PubMed  CAS  Google Scholar 

  77. Tian L, Duncan RR, Hammond MS, Coghill LS, Wen H, Rusinova R, Clark AG, Levitan IB, Shipston MJ (2001) Alternative splicing switches potassium channel sensitivity to protein phosphorylation. J Biol Chem 276:7717–7720

    PubMed  CAS  Google Scholar 

  78. Tomas M, Vazquez E, Fernandez-Fernandez JM, Subirana I, Plata C, Heras M, Vila J, Marrugat J, Valverde MA, Senti M (2008) Genetic variation in the KCNMA1 potassium channel alpha subunit as risk factor for severe essential hypertension and myocardial infarction. J Hypertens 26:2147–2153

    PubMed  CAS  Google Scholar 

  79. Toro L, Amador M, Stefani E (1990) ANG II inhibits calcium-activated potassium channels from coronary smooth muscle in lipid bilayers. Am J Physiol 258:H912–H915

    PubMed  CAS  Google Scholar 

  80. Toro L, Ramos-Franco J, Stefani E (1990) GTP-dependent regulation of myometrial KCa channels incorporated into lipid bilayers. J Gen Physiol 96:373–394

    PubMed  CAS  Google Scholar 

  81. Uebele VN, Lagrutta A, Wade T, Figueroa DJ, Liu Y, McKenna E, Austin CP, Bennett PB, Swanson R (2000) Cloning and functional expression of 2 families of {beta}-subunits of the large conductance calcium-activated K+ channel. J Biol Chem 275:23211–23218

    PubMed  CAS  Google Scholar 

  82. Wade GR, Sims SM (1993) Muscarinic stimulation of tracheal smooth muscle cells activates large-conductance Ca2+-dependent K+ channel. Am J Physiol Cell Physiol 265:C658–C665

    CAS  Google Scholar 

  83. Wallner M, Meera P, Ottolia M, Kaczorowski GJ, Latorre R, Garcia ML, Stefani E, Toro L (1995) Characterization of and modulation by a beta-subunit of a human maxi KCa channel cloned from myometrium. Receptors Channels 3:185–199

    PubMed  CAS  Google Scholar 

  84. Wallner M, Meera P, Toro L (1999) Molecular basis of fast inactivation in voltage and Ca2+-activated K+ channels: a transmembrane β-subunit homolog. Proc Natl Acad Sci U S A 96:4137–4142

    PubMed Central  PubMed  CAS  Google Scholar 

  85. Weaver AK, Liu X, Sontheimer H (2004) Role for calcium-activated potassium channels (BK) in growth control of human malignant glioma cells. J Neurosci Res 78:224–234

    PubMed Central  PubMed  CAS  Google Scholar 

  86. Werner ME, Zvara P, Meredith AL, Aldrich RW, Nelson MT (2005) Erectile dysfunction in mice lacking the large conductance calcium-activated potassium (BK) channel. J Physiol 567:545–556

    PubMed Central  PubMed  CAS  Google Scholar 

  87. Wojtovich AP, Nadtochiy SM, Urciuoli WR, Smith CO, Grunnet M, Nehrke K, Brookes PS (2013) A non-cardiomyocyte autonomous mechanism of cardioprotection involving the SLO1 BK channel. Peer J 1:e48

    PubMed Central  PubMed  Google Scholar 

  88. Wood LS, Vogeli G (1997) Mutations and deletions within the S8-S9 interdomain region abolish complementation of N- and C-terminal domains of Ca(2+)-activated K+ (BK) channels. Biochem Biophys Res Commun 240:623–628

    PubMed  CAS  Google Scholar 

  89. Xia XM, Ding JP, Lingle CJ (2003) Inactivation of BK channels by the NH2 terminus of the beta2 auxiliary subunit: an essential role of a terminal peptide segment of three hydrophobic residues. J Gen Physiol 121:125–148

    PubMed Central  PubMed  CAS  Google Scholar 

  90. Xu W, Liu Y, Wang S, McDonald T, Van Eyk JE, Sidor A, O'Rourke B (2002) Cytoprotective role of Ca2+-activated K+ channels in the cardiac inner mitochondrial membrane. Science 298:1029–1033

    PubMed  CAS  Google Scholar 

  91. Yan J, Aldrich RW (2010) LRRC26 auxiliary protein allows BK channel activation at resting voltage without calcium. Nature 466:513–516

    PubMed  CAS  Google Scholar 

  92. Yan J, Aldrich RW (2012) BK potassium channel modulation by leucine-rich repeat-containing proteins. Proc Natl Acad Sci U S A 109:7917–7922

    PubMed Central  PubMed  CAS  Google Scholar 

  93. Yan J, Olsen JV, Park KS, Li W, Bildl W, Schulte U, Aldrich RW, Fakler B, Trimmer JS (2008) Profiling the phospho-status of the BKCa channel alpha subunit in rat brain reveals unexpected patterns and complexity. Mol Cell Proteomics 7:2188–2198

    PubMed Central  PubMed  CAS  Google Scholar 

  94. Yang Y, Li PY, Cheng J, Mao L, Wen J, Tan XQ, Liu ZF, Zeng XR (2013) Function of BKCa channels is reduced in human vascular smooth muscle cells from Han Chinese patients with hypertension. Hypertension 61:519–525

    PubMed  CAS  Google Scholar 

  95. Yu X, Ma H, Barman SA, Liu AT, Sellers M, Stallone JN, Prossnitz ER, White RE, Han G (2011) Activation of G protein-coupled estrogen receptor induces endothelium-independent relaxation of coronary artery smooth muscle. Am J Physiol Endocrinol Metab 301:E882–E888

    PubMed Central  PubMed  CAS  Google Scholar 

  96. Yuan P, Leonetti MD, Hsiung Y, MacKinnon R (2012) Open structure of the Ca2+ gating ring in the high-conductance Ca2+-activated K+ channel. Nature 481:94–97

    CAS  Google Scholar 

  97. Zarei MM, Eghbali M, Alioua A, Song M, Knaus HG, Stefani E, Toro L (2004) An endoplasmic reticulum trafficking signal prevents surface expression of a voltage- and Ca2+-activated K+ channel splice variant. Proc Natl Acad Sci U S A 101:10072–10077

    PubMed Central  PubMed  CAS  Google Scholar 

  98. Zarei MM, Zhu N, Alioua A, Eghbali M, Stefani E, Toro L (2001) A novel MaxiK splice variant exhibits dominant-negative properties for surface expression. J Biol Chem 276:16232–16239

    PubMed  CAS  Google Scholar 

  99. Zhou X, Wulfsen I, Korth M, McClafferty H, Lukowski R, Shipston MJ, Ruth P, Dobrev D, Wieland T (2012) Palmitoylation and membrane association of the stress axis regulated insert (STREX) controls BK channel regulation by protein kinase C. J Biol Chem 287:32161–32171

    PubMed Central  PubMed  CAS  Google Scholar 

  100. Zhou XB, Wulfsen I, Lutz S, Utku E, Sausbier U, Ruth P, Wieland T, Korth M (2008) M2 muscarinic receptors induce airway smooth muscle activation via a dual, Gbetagamma-mediated inhibition of large conductance Ca2+-activated K+ channel activity. J Biol Chem 283:21036–21044

    PubMed Central  PubMed  CAS  Google Scholar 

  101. Zhou XB, Wulfsen I, Utku E, Sausbier U, Sausbier M, Wieland T, Ruth P, Korth M (2010) Dual role of protein kinase C on BK channel regulation. Proc Natl Acad Sci U S A 107:8005–8010

    PubMed Central  PubMed  CAS  Google Scholar 

  102. Zhu N, Eghbali M, Helguera G, Song M, Stefani E, Toro L (2005) Alternative splicing of Slo channel gene programmed by estrogen, progesterone and pregnancy. FEBS Lett 579:4856–4860

    PubMed  CAS  Google Scholar 

  103. Zou S, Jha S, Kim EY, Dryer SE (2008) A novel actin-binding domain on Slo1 calcium-activated potassium channels is necessary for their expression in the plasma membrane. Mol Pharmacol 73:359–368

    PubMed  CAS  Google Scholar 

  104. Zou S, Jha S, Kim EY, Dryer SE (2008) The beta 1 subunit of L-type voltage-gated Ca2+ channels independently binds to and inhibits the gating of large-conductance Ca2+-activated K+ channels. Mol Pharmacol 73:369–378

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants, HL107418 and HL096740 (LT, ES) and HL088640 (ES) and by the American Heart Association National Scientist Development Award 11SDG7230059 (HS). Kcnma1−/− was kindly provided by Dr. Andrea Meredith (University of Maryland School of Medicine).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ligia Toro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Toro, L., Li, M., Zhang, Z. et al. MaxiK channel and cell signalling. Pflugers Arch - Eur J Physiol 466, 875–886 (2014). https://doi.org/10.1007/s00424-013-1359-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-013-1359-0

Keywords

Navigation