Skip to main content

Multi-macromolecular Extraction from Endosymbiotic Anthozoans

  • Protocol
  • First Online:
Lipidomics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2625))

  • 938 Accesses

Abstract

Obligately symbiotic associations between reef-building corals (anthozoan cnidarians) and photosynthetically active dinoflagellates of the family Symbiodiniaceae comprise the functional basis of all coral reef ecosystems. Given the existential threats of global climate change toward these thermo-sensitive entities, there is an urgent need to better understand the physiological implications of changes in the abiotic milieu of scleractinian corals and their mutualistic algal endosymbionts. Although initially slow to leverage the immense breakthroughs in molecular biotechnology that have benefited humankind, coral biologists are making up for lost time in exploiting an array of ever-advancing molecular tools for answering key questions pertaining to the survival of corals in an ever-changing world. In order to comprehensively characterize the multi-omic landscape of the coral holobiont—the cnidarian host, its intracellular dinoflagellates, and a plethora of other microbial constituents—I introduce a series of protocols herein that yield large quantities of high-quality RNA, DNA, protein, lipids, and polar metabolites from a diverse array of reef corals and endosymbiotic sea anemones. Although numerous published articles in the invertebrate zoology field feature protocols that lead to sufficiently high yield of intact host coral macromolecules, through using the approach outlined herein one may simultaneously acquire a rich, multi-compartmental biochemical pool that truly reflects the complex and dynamic nature of these animal–plant chimeras.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schoenberg DA, Trench RK, Smith DC (1980) Genetic variation in Symbiodinium (=Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. II. Morphological variation in Symbiodinium microadriaticum. Proc R Soc London Ser B 207:429–444. https://doi.org/10.1098/rspb.1980.0032

    Article  Google Scholar 

  2. Schoenberg DA, Trench RK, Smith DC (1980) Genetic variation in Symbiodinium (Gymnodinium) microadriaticum Freudenthal, and specificity in its symbiosis with marine invertebrates. I. Isoenzyme and soluble protein patterns of axenic cultures of Symbiodinium microadriaticum. Proc R Soc London Ser B 207:405–427. https://doi.org/10.1098/rspb.1980.0031

    Article  CAS  Google Scholar 

  3. Mayfield AB, Chan PH, Putnam HM et al (2012) The effects of a variable temperature regime on the physiology of the reef-building coral Seriatopora hystrix: results from a laboratory-based reciprocal transplant. J Exp Biol 215:4183–4195. https://doi.org/10.1242/jeb.071688

    Article  CAS  Google Scholar 

  4. Mayfield AB, Fan TY, Chen CS (2013) Real-time PCR-based gene expression analysis in the model reef-building coral Pocillopora damicornis: insight from a salinity stress study. Platax 10:1–29, Taiwan

    Google Scholar 

  5. Mayfield AB, Chen CS, Liu PJ (2014) Decreased green fluorescent protein-like chromoprotein gene expression in specimens of the reef-building coral Pocillopora damicornis undergoing high temperature-induced bleaching. Platax 11:1–23, Taiwan

    Google Scholar 

  6. Mayfield AB, Chen YH, Dai CF, Chen CS (2014) The effects of temperature on gene expression in the Indo-Pacific reef-building coral Seriatopora hystrix: insight from aquarium studies in Southern Taiwan. Int J Marine Sci 4:1–23. https://doi.org/10.5376/ijms.2014.04.0050

    Article  Google Scholar 

  7. Mayfield AB, Hirst MB, Gates RD (2009) Gene expression normalization in a dual-compartment system: a real-time quantitative polymerase chain reaction protocol for symbiotic anthozoans. Mol Ecol Resour 9:462–470. https://doi.org/10.1111/j.1755-0998.2008.02349.x

    Article  Google Scholar 

  8. Mayfield AB, Hsiao YY, Chen HK et al (2014) Rubisco expression in the dinoflagellate Symbiodinium sp. is influenced by both photoperiod and endosymbiotic lifestyle. Mar Biotechnol 16:371–384. https://doi.org/10.1007/s10126-014-9558-z

    Article  CAS  Google Scholar 

  9. Chen WN, Hsiao YJ, Mayfield AB et al (2016) Transmission of a heterologous clade C Symbiodinium in a model anemone infection system via asexual reproduction. PeerJ 4:e2358. https://doi.org/10.7717/peerj.2358

    Article  Google Scholar 

  10. Moya A, Tambutté S, Béranger G et al (2008) Cloning and use of a coral 36B4 gene to study the differential expression of coral genes between light and dark conditions. Mar Biotechnol 10:653–663. https://doi.org/10.1007/s10126-008-9101-1

    Article  CAS  Google Scholar 

  11. Muscatine L, Cernichiari E (1969) Assimilation of photosynthetic products of zooxanthellae by a reef coral. Biol Bull 137:506–523. https://doi.org/10.2307/1540172

    Article  CAS  Google Scholar 

  12. Mayfield AB, Dempsey AC, Chen C-S (2019) Modeling environmentally-mediated variation in reef coral physiology. J Sea Res 145:44–54. https://doi.org/10.1016/j.seares.2019.01.003

    Article  Google Scholar 

  13. Mayfield AB, Tsai S, Lin C (2019) The Coral Hospital. Biopreserv Biobank 17:355–369. https://doi.org/10.1089/bio.2018.0137

    Article  Google Scholar 

  14. LaJeunesse TC, Lambert G, Andersen RA et al (2005) Symbiodinium (Pyrrhophyta) genome sizes (DNA content) are smallest among dinoflagellates. J Phycol 41:880–886. https://doi.org/10.1111/j.0022-3646.2005.04231.x

    Article  CAS  Google Scholar 

  15. Mayfield AB, Hsiao Y-Y, Fan T-Y et al (2010) Evaluating the temporal stability of stress-activated protein kinase and cytoskeleton gene expression in the Pacific reef corals Pocillopora damicornis and Seriatopora hystrix. J Exp Mar Biol Ecol 395:215–222. https://doi.org/10.1016/j.jembe.2010.09.007

    Article  Google Scholar 

  16. Mayfield AB, Wang LH, Tang PC et al (2011) Assessing the impacts of experimentally elevated temperature on the biological composition and molecular chaperone gene expression of a reef coral. PLoS One 6:e26529. https://doi.org/10.1371/journal.pone.0026529

    Article  CAS  Google Scholar 

  17. Mayfield AB, Wang YB, Chen CS et al (2014) Compartment-specific transcriptomics in a reef-building coral exposed to elevated temperatures. Mol Ecol 23:5816–5830. https://doi.org/10.1111/mec.12982

    Article  CAS  Google Scholar 

  18. Mayfield AB, Chen CS, Dempsey AC (2017) Biomarker profiling in reef corals of Tonga's Ha'apai and Vava'u archipelagos. PLoS One 12:e0185857. https://doi.org/10.1371/journal.pone.0185857

    Article  CAS  Google Scholar 

  19. Mayfield AB, Chen CS, Dempsey AC (2017) Identifying corals displaying aberrant behavior in Fiji’s Lau Archipelago. PLoS One 12:e0177267. https://doi.org/10.1371/journal.pone.0177267

    Article  CAS  Google Scholar 

  20. Mayfield AB, Chen CS, Dempsey AC (2017) The molecular ecophysiology of closely related pocilloporid corals of New Caledonia. Platax 14:1–45, Taiwan

    Google Scholar 

  21. Mayfield AB, Dempsey AC, Inamdar J, Chen CS (2018) A statistical platform for assessing coral health in an era of changing global climate-I: a case study from Fiji’s Lau Archipelago. Platax 15:1–35, Taiwan

    Google Scholar 

  22. Mayfield AB (2016) Uncovering spatio-temporal and treatment-derived differences in the molecular physiology of a model coral-dinoflagellate mutualism with multivariate statistical approaches. J Marine Sci Eng 4. https://doi.org/10.3390/jmse4030063

  23. Peng SE, Chen WN, Chen HK et al (2011) Lipid bodies in coral-dinoflagellate endosymbiosis: proteomic and ultrastructural studies. Proteomics 11:3540–3555. https://doi.org/10.1002/pmic.201000552

    Article  CAS  Google Scholar 

  24. Mayfield A, Fan TY, Chen C-S (2013) Physiological acclimation to elevated temperature in a reef-building coral from an upwelling environment. Coral Reefs 32:909–921. https://doi.org/10.1007/s00338-013-1067-4

    Article  Google Scholar 

  25. Mayfield AB, Hsiao YY, Fan TY, Chen CS (2012) Temporal variation in RNA/DNA and protein/DNA ratios in four anthozoan-dinoflagellate endosymbioses of the Indo-Pacific: implications for molecular diagnostics. Platax 9:1–24, Taiwan

    Google Scholar 

  26. Mayfield AB, Gates RD (2007) Osmoregulation in anthozoan-dinoflagellate symbiosis. Comp Biochem Physiol A Mol Integr Physiol 147:1–10. https://doi.org/10.1016/j.cbpa.2006.12.042

    Article  CAS  Google Scholar 

  27. Lin KL, Wang JT, Fang LS (2000) Participation of glycoproteins on zooxanthellal cell walls in the establishment of a symbiotic relationship with the sea anemone, Aiptasia pulchella. Zool Stud 39:172–178, Taiwan

    CAS  Google Scholar 

  28. Wang LH, Lee HH, Fang LS et al (2013) Fatty acid and phospholipid syntheses are prerequisites for the cell cycle of Symbiodinium and their endosymbiosis within sea anemones. PLoS One 8. https://doi.org/10.1371/journal.pone.0072486

  29. Mayfield AB, Chen CS, Dempsey AC, Bruckner AW (2016) The molecular ecophysiology of closely related pocilloporids from the South Pacific: a case study from the Austral and Cook Islands. Platax 13:1–25, Taiwan

    Google Scholar 

  30. Wegley L, Edwards R, Rodriguez-Brito B et al (2007) Metagenomic analysis of the microbial community associated with the coral Porites astreoides. Environ Microbiol 9:2707–2719. https://doi.org/10.1111/j.1462-2920.2007.01383.x

    Article  CAS  Google Scholar 

  31. Mayfield AB, Chen YJ, Lu CY, Chen CS (2016) Proteins responsive to variable temperature exposure in the reef-building coral Seriatopora hystrix. In: Ortiz S (ed) Coral reefs: ecosystems, environmental impact and current threats. New York, NOVA Publishing

    Google Scholar 

  32. Mayfield AB, Wang YB, Chen CS et al (2016) Dual-compartmental transcriptomic + proteomic analysis of a marine endosymbiosis exposed to environmental change. Mol Ecol 25:5944–5958. https://doi.org/10.1111/mec.13896

    Article  CAS  Google Scholar 

  33. Mayfield AB, Chen YJ, Lu CY, Chen CS (2018) Exploring the environmental physiology of the Indo-Pacific reef coral Seriatopora hystrix using differential proteomics. Open J Marine Sci 8:223–252. https://doi.org/10.4236/ojms.2018.82012

    Article  Google Scholar 

  34. Mayfield AB, Chen YJ, Lu CY et al (2018) The proteomic response of the reef coral Pocillopora acuta to experimentally elevated temperatures. PLoS One 13:e0192001. https://doi.org/10.1371/journal.pone.0192001

    Article  CAS  Google Scholar 

  35. Podechard N, Ducheix S, Polizzi A et al (2018) Dual extraction of mRNA and lipids from a single biological sample. Sci Rep 8:7019. https://doi.org/10.1038/s41598-018-25332-9

    Article  CAS  Google Scholar 

  36. Mayfield AB, Chen MN, Meng PJ et al (2013) The physiological response of the reef coral Pocillopora damicornis to elevated temperature: results from coral reef mesocosm experiments in southern Taiwan. Mar Environ Res 86:1–11. https://doi.org/10.1016/j.marenvres.2013.01.004

    Article  CAS  Google Scholar 

  37. Chen WNU, Kang HJ, Weis VM et al (2012) Diel rhythmicity of lipid-body formation in a coral-Symbiodinium endosymbiosis. Coral Reefs 31:521–534. https://doi.org/10.1007/s00338-011-0868-6

    Article  Google Scholar 

  38. Mayfield AB, Aguilar C, Kolodziej G et al (2021) Shotgun proteomic analysis of thermally challenged reef corals. Front Mar Sci 8. https://doi.org/10.3389/fmars.2021.660153

  39. Musada GR, Dvoriantchikova G, Myer C et al (2020) The effect of extrinsic Wnt/β-catenin signaling in Muller glia on retinal ganglion cell neurite growth. Dev Neurobiol 80:98–110. https://doi.org/10.1002/dneu.22741

    Article  CAS  Google Scholar 

  40. Mayfield AB (2022) Machine-learning-based proteomic predictive modeling with thermally-challenged Caribbean reef corals. Diversity 14. https://doi.org/10.3390/d14010033

  41. Mayfield AB (2020) Proteomic signatures of corals from thermodynamic reefs. Microorganisms 8. https://doi.org/10.3390/microorganisms8081171

  42. Reynolds DA, Yoo MJ, Dixson DL et al (2020) Exposure to the Florida red tide dinoflagellate, Karenia brevis, and its associated brevetoxins induces ecophysiological and proteomic alterations in Porites astreoides. PLoS One 15:e0228414. https://doi.org/10.1371/journal.pone.0228414

    Article  CAS  Google Scholar 

  43. Andersson ER, Day RD, Loewenstein JM et al (2019) Evaluation of sample preparation methods for the analysis of reef-building corals using 1H-NMR-based metabolomics. Meta 9. https://doi.org/10.3390/metabo9020032

  44. Chen HK, Song SN, Wang LH et al (2015) A compartmental comparison of major lipid species in a coral-Symbiodinium endosymbiosis: evidence that the coral host regulates lipogenesis of its cytosolic lipid bodies. PLoS One 10. https://doi.org/10.1371/journal.pone.0132519

  45. Mayfield AB, Dempsey AC (2022) Environmentally-driven variation in the physiology of a new Caledonian reef coral. Oceans 3:15–29. https://doi.org/10.3390/oceans3010002

    Article  Google Scholar 

  46. Rubin ET, Enochs IC, Foord C et al (2021) Molecular mechanisms of coral persistence within highly urbanized locations in the Port of Miami, Florida. Front Mar Sci 8. https://doi.org/10.3389/fmars.2021.695236

  47. McRae CJ, Mayfield AB, Huang W-B et al (2021) Contrasting proteomic responses of adult and larval coral to high temperatures. Front Mar Sci 8. https://doi.org/10.3389/fmars.2021.716124

  48. Tisthammer KH, Timmins-Schiffman E, Seneca FO et al (2021) Physiological and molecular responses of lobe coral indicate nearshore adaptations to anthropogenic stressors. Sci Rep 11:3423. https://doi.org/10.1038/s41598-021-82569-7

    Article  CAS  Google Scholar 

  49. Sproles AE, Oakley CA, Matthews JL et al (2019) Proteomics quantifies protein expression changes in a model cnidarian colonised by a thermally tolerant but suboptimal symbiont. ISME J 13:2334–2345. https://doi.org/10.1038/s41396-019-0437-5

    Article  CAS  Google Scholar 

  50. Rocker MM, Kenkel CD, Francis DS et al (2019) Plasticity in gene expression and fatty acid profiles of Acropora tenuis reciprocally transplanted between two water quality regimes in the central Great Barrier Reef, Australia. J Exp Mar Biol Ecol 511:40–53. https://doi.org/10.1016/j.jembe.2018.11.004

    Article  CAS  Google Scholar 

  51. Dimos BA, Mahmud SA, Fuess LE et al (2019) Uncovering a mitochondrial unfolded protein response in corals and its role in adapting to a changing world. Proc R Soc London Ser B 286:20190470. https://doi.org/10.1098/rspb.2019.0470

    Article  CAS  Google Scholar 

  52. Lohr KE, Khattri RB, Guingab-Cagmat J et al (2019) Metabolomic profiles differ among unique genotypes of a threatened Caribbean coral. Sci Rep 9. https://doi.org/10.1038/s41598-019-42434-0

  53. Wright RM, Correa AMS, Quigley LA et al (2019) Gene expression of endangered coral (Orbicella spp.) in Flower Garden Banks National Marine Sanctuary after Hurricane Harvey. Front Mar Sci 6. https://doi.org/10.3389/fmars.2019.00672

  54. Seveso D, Montano S, Reggente MA et al (2017) The cellular stress response of the scleractinian coral Goniopora columna during the progression of the black band disease. Cell Stress Chaperones 22:225–236. https://doi.org/10.1007/s12192-016-0756-7

    Article  CAS  Google Scholar 

  55. Chen HK, Wang LH, Chen WU et al (2017) Coral lipid bodies as the relay center interconnecting diel-dependent lipidomic changes in different cellular compartments. Sci Rep 7:3244. https://doi.org/10.1038/s41598-017-02722-z

    Article  CAS  Google Scholar 

  56. Bligh EG, Dyer WJ (1959) A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917. https://doi.org/10.1139/o59-099

    Article  CAS  Google Scholar 

  57. Ricaurte M, Schizas NV, Ciborowski P et al (2016) Proteomic analysis of bleached and unbleached Acropora palmata, a threatened coral species of the Caribbean. Mar Pollut Bull 107:224–232. https://doi.org/10.1016/j.marpolbul.2016.03.068

    Article  CAS  Google Scholar 

  58. Vidal-Dupiol J, Zoccola D, Tambutté E et al (2013) Genes related to ion-transport and energy production are upregulated in response to CO2-driven pH decrease in corals: new insights from transcriptome analysis. PLoS One 8:e58652. https://doi.org/10.1371/journal.pone.0058652

    Article  CAS  Google Scholar 

  59. Barshis DJ, Ladner JT, Oliver TA et al (2013) Genomic basis for coral resilience to climate change. Proc Natl Acad Sci 110:1387–1392. https://doi.org/10.1073/pnas.1210224110

    Article  Google Scholar 

  60. Putnam H, Mayfield AB, Fan TY et al (2012) The physiological and molecular responses of larvae from the reef-building coral Pocillopora damicornis exposed to near-future increases in temperature and pCO2. Mar Biol 160:2157–2173. https://doi.org/10.1007/s00227-012-2129-9

    Article  CAS  Google Scholar 

  61. Kenkel CD, Aglyamova G, Alamaru A et al (2011) Development of gene expression markers of acute heat-light stress in reef-building corals of the genus Porites. PLoS One 6. https://doi.org/10.1371/journal.pone.0026914

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anderson B. Mayfield .

Editor information

Editors and Affiliations

Appendices

Appendices

Appendix Sheet 1

Printable protocols for RNA, DNA, and protein extractions. Note that the blank spaces are to be used to either place check marks (to demonstrate completion of the respective step) or to fill in pertinent details, namely with respect to temperatures (temp.), times, and volumes. Alternative RNA and DNA spin column kits can be substituted.

RNA Extraction             Date: _________

  • Homogenization and Phase Separation

    1. 1.

      Homogenized in: LN2_____ TRIzol®_____ TRI-Reagent®______ Other______

      1. (a)

        w/: mortar and pestle___ micro-pestle___ tissue lyser__ bead mill__ other___

    2. 2.

      Incubated at _______(temp.) for _______(time) after vigorous vortexing.

      1. (a)

        w/: shaker table_____ tissue lyser_____

    3. 3.

      Added 200 μL of chloroform and incubated at RT for _______(time). w/: new tube_______

    4. 4.

      Spun at 12,000 × g for 15 min at 4  °C and transferred aqueous phase to new tube______.

  • Precipitation

    1. 5.

      Precipitated w/ 250 μL of isopropanol and 250 μL of HSS at ____(temp.) for ______(time) and spun at 12,000 × g for 10 min at 4  °C.

      1. (a)

        w/: Pellet Paint™ _____

  • Purification

    1. 6.

      Resuspended pellet in ____ μL of lysis buffer A and ____ μL of 100% ethanol.

    2. 7.

      Added ____ μL to _________(manufacturer’s name) RNA kit spin column.

    3. 8.

      Followed manufacturer’s recommendations and incubated columns in 60 °C oven.

      1. (a)

        On-column DNase digestion______(yes or no)

    4. 9.

      Eluted into _____ μL of DEPC-treated water.

DNA Extraction

  • Phase Separation

    1. 1.

      Added 500 μL of BEB and incubated on shaker table for _______(time).

    2. 2.

      Spun at 12,000 × g for 10 min at 4 °C and transferred aqueous phase to new tube______.

  • Precipitation

    1. 3.

      Precipitated DNA w/ 60 μL of 3 M NA acetate and 600 μL of isopropanol at _____(temp.) for ____(time).

      1. (a)

        w/: 2 μL of Pellet Paint™_____(yes or no).

    2. 4.

      Spun at 12,000 × g for 10 min at 4 °C_____.

  • Purification

    1. 5.

      Resuspended pellet in a minimum volume of 100 μL of the first buffer of the preferred DNA clean-up kit (e.g., PCR-A buffer from Axygen’s PCR clean-up kit)_____.

    2. 6.

      Carried out spins and washes as recommended by manufacturer_____.

    3. 7.

      After evaporating residual ethanol in 60 °C oven, eluted DNA into ___μL of pre-warmed (to 60 °C) “eluent” (must include Tris at a pH of at least 8 for best DNA elution).

Protein Extraction

  1. 8.

    Precipitated protein in 1.5 mL of acetone at ______(temp.) for _______(time).

  2. 9.

    Spun at 12,000 × g for 10 min at 4 °C____.

  3. 10.

    Washed pellet 3× w/ PWI and 1× w/ PWII at 8000 × g for 5 min at 4 °C, and dried on benchtop for _____ min.

  4. 11.

    Resuspended protein in _____μL of______ buffer, sonicated for _____ min, boiled for ____ min at 100 °C, and transferred _____μL to each of ____tubes.

  5. 12.

    Quantified ____μL with the 2-D Quant kit, ____ μL with a Bradford assay, ___ μL with a BCA assay, or ___ μL with the Qubit protein assay kit.

Appendix Sheet 2

Printable sheets for RNA, DNA, and protein quantification and quality control analyses. A spectrophotometer or, preferably, a bioanalyzer can be used to generate these (or comparable) data. Subscripts correspond to the technical replicate number. BSA = bovine serum albumin (the most common standard used in protein quantification assays). QC = quality control.

A set of 2 tables for R N A and D N A. Each table has ten columns and twelve empty rows. The tables have columns for sample name, temperature, times, and volumes.
A table titled protein. It has 6 columns and 19 rows. The columns are for, sample, absorbance, assay volume, protein, total protein, and total protein-post Q C. The rows are for, 0 B S A, 10 B S A, 20 B S A, 30 B S A, 40 B S A, 50 B S A with last row for average.

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Mayfield, A.B. (2023). Multi-macromolecular Extraction from Endosymbiotic Anthozoans. In: Bhattacharya, S.K. (eds) Lipidomics. Methods in Molecular Biology, vol 2625. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2966-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2966-6_3

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2965-9

  • Online ISBN: 978-1-0716-2966-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics