Skip to main content

Application of a Bacillus subtilis Whole-Cell Biosensor (PliaI-lux) for the Identification of Cell Wall Active Antibacterial Compounds

  • Protocol
  • First Online:
Antibiotics

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2601))

Abstract

Whole-cell biosensors, based on the visualization of a reporter strain’s response to a particular stimulus, are a robust and cost-effective means to monitor defined environmental conditions or the presence of chemical compounds. One specific field in which such biosensors are frequently applied is drug discovery, that is, the screening of large numbers of bacterial or fungal strains for the production of antimicrobial compounds. Here, we describe the application of a luminescence-based Bacillus subtilis biosensor for the discovery of cell wall active substances; this article is an update to our previous chapter published in 2017. The system is based on the well-characterized promoter PliaI, which is induced in response to a wide range of conditions that cause cell envelope stress, particularly antibiotics that interfere with the membrane-anchored steps of cell wall biosynthesis. A simple “spot-on-lawn” assay, where colonies of potential producer strains are grown directly on a lawn of the reporter strain, allows for quantitative and time-resolved detection of antimicrobial compounds. Due to the very low technical demands of this procedure, we expect it to be easily applicable to a large variety of candidate producer strains and growth conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Nic M, Jirat J, Kostata B (2014) IUPAC compendium of chemical terminology – the gold book. http://goldbook.iupac.org. Accessed 01 Apr 2022

  2. Wex KW, Saur JS, Handel F, Ortlieb N, Mokeev V, Kulik A, Niedermeyer THJ, Mast Y, Grond S, Berscheid A, Brötz-Oesterhelt H (2021) Bioreporters for direct mode of action-informed screening of antibiotic producer strains. Cell Chem Biol 28:1242–1252.e4

    Article  PubMed  CAS  Google Scholar 

  3. Park M, Tsai SL, Chen W (2013) Microbial biosensors: engineered microorganisms as the sensing machinery. Sensors 13:5777–5795

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Miller JH (1972) Experiments in molecular genetics. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  5. Mascher T, Zimmer SL, Smith TA, Helmann JD (2004) Antibiotic-inducible promoter regulated by the cell envelope stress-sensing two-component system LiaRS of Bacillus subtilis. Antimicrob Agents Chemother 48:2888–2896

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Kremers G-J, Gilbert SG, Cranfill PJ, Davidson MW, Piston DW (2011) Fluorescent proteins at a glance. J Cell Sci 124:157–160

    Article  PubMed  CAS  Google Scholar 

  7. Kobras CM, Mascher T, Gebhard S (2017) Application of a Bacillus subtilis whole-cell biosensor (PliaI-lux) for the identification of cell wall active antibacterial compounds. In: Sass P (ed) Antibiotics. Methods in molecular biology. Humana Press, New York, pp 121–131

    Google Scholar 

  8. Jordan S, Junker A, Helmann JD, Mascher T (2006) Regulation of LiaRS-dependent gene expression in Bacillus subtilis: identification of inhibitor proteins, regulator binding sites, and target genes of a conserved cell envelope stress-sensing two-component system. J Bacteriol 188:5153–5166

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Schrecke K, Jordan S, Mascher T (2013) Stoichiometry and perturbation studies of the LiaFSR system of Bacillus subtilis. Mol Microbiol 87:769–788

    Article  PubMed  CAS  Google Scholar 

  10. Cao M, Wang T, Ye R, Helmann JD (2002) Antibiotics that inhibit cell wall biosynthesis induce expression of the Bacillus subtilis σW and σM regulons. Mol Microbiol 45:1267–1276

    Article  PubMed  CAS  Google Scholar 

  11. Mascher T, Margulis NG, Wang T, Ye RW, Helmann JD (2003) Cell wall stress responses in Bacillus subtilis: the regulatory network of the bacitracin stimulon. Mol Microbiol 50:1591–1604

    Article  PubMed  CAS  Google Scholar 

  12. Staron A, Finkeisen DE, Mascher T (2011) Peptide antibiotic sensing and detoxification modules of Bacillus subtilis. Antimicrob Agents Chemother 55:515–525

    Article  PubMed  Google Scholar 

  13. Helmann JD, Mascher T (2005) Compositions and methods for screening of antibacterial compounds. US Patent 7309484

    Google Scholar 

  14. Wolf D, Mascher T (2016) The applied side of antimicrobial peptide-inducible promoters from Firmicutes bacteria: expression systems and whole-cell biosensors. Appl Microbiol Biotechnol 100:4817–4829

    Article  PubMed  CAS  Google Scholar 

  15. Radeck J, Kraft K, Bartels J, Cikovic T, Dürr F, Emenegger J, Kelterborn S, Sauer C, Fritz G, Gebhard S, Mascher T (2013) The Bacillus BioBrick Box: generation and evaluation of essential genetic building blocks for standardized work with Bacillus subtilis. J Biol Eng 7:29

    Article  PubMed  PubMed Central  Google Scholar 

  16. Schmalisch M, Maiques E, Nikolov L, Camp AH, Chevreux B, Muffler A, Rodriguez S, Perkins J, Losick R (2010) Small genes under sporulation control in the Bacillus subtilis genome. J Bacteriol 192:5402–5412

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Lee K, Walker AR, Chakraborty B, Kaspar JR, Nascimento MM, Burne RA, Björkroth J (2019) Novel probiotic mechanisms of the oral bacterium Streptococcus sp. A12 as explored with functional genomics. Appl Environ Microbiol 85:e01335-19

    Article  PubMed  PubMed Central  Google Scholar 

  18. Jordan S, Rietkotter E, Strauch MA, Kalamorz F, Butcher BG, Helmann JD, Mascher T (2007) LiaRS-dependent gene expression is embedded in transition state regulation in Bacillus subtilis. Microbiology 153:2530–2540

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susanne Gebhard .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Kobras, C.M., Morris, S.M., Mascher, T., Gebhard, S. (2023). Application of a Bacillus subtilis Whole-Cell Biosensor (PliaI-lux) for the Identification of Cell Wall Active Antibacterial Compounds. In: Sass, P. (eds) Antibiotics. Methods in Molecular Biology, vol 2601. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2855-3_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2855-3_13

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2854-6

  • Online ISBN: 978-1-0716-2855-3

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics