Skip to main content

DIGE-Based Biomarker Discovery in Blood Cancers

  • Protocol
  • First Online:
Difference Gel Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2596))

Abstract

Cancer of blood or bone marrow-derived cells dysregulates normal hematopoiesis and accounts for over 6% of all cancer cases annually. Proteomic analyses of blood cancers have improved our understanding of disease mechanisms and identified numerous proteins of clinical relevance. For many years, gel-based proteomic studies have aided in the discovery of novel diagnostic, prognostic, and predictive biomarkers, as well as therapeutic targets, in various diseases, including blood cancer. Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) facilitates comparative proteomic research to identify differential protein expression in a simple and reproducible manner. The versatility of 2D-DIGE as a quantitative proteomic technique has provided insight into various aspects of blood cancer pathology, including disease development, prognostic subtypes, and drug resistance. The ability to couple 2D-DIGE with additional downstream mass spectrometry-based techniques yields comprehensive workflows capable of identifying proteins of biological and clinical significance. The application of 2D-DIGE in blood cancer research has significantly contributed to the increasingly important initiative of precision medicine. This chapter will focus on the influential role of 2D-DIGE as a tool in blood cancer research.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sung H, Ferlay J, Siegel RL et al (2021) Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660

    Article  PubMed  Google Scholar 

  2. Hao T, Li-Talley M, Buck A, Chen W (2019) An emerging trend of rapid increase of leukemia but not all cancers in the aging population in the United States. Sci Rep 9:12070. https://doi.org/10.1038/s41598-019-48445-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Hochhaus A, Larson RA, Guilhot F et al (2017) Long-term outcomes of imatinib treatment for chronic myeloid leukemia. N Engl J Med 376:917–927. https://doi.org/10.1056/NEJMoa1609324

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Pulte D, Jansen L, Brenner H (2020) Changes in long term survival after diagnosis with common hematologic malignancies in the early 21st century. Blood Cancer J 10:56. https://doi.org/10.1038/s41408-020-0323-4

    Article  PubMed  PubMed Central  Google Scholar 

  5. Schlegelberger B, Mecucci C, Wlodarski M (2021) Review of guidelines for the identification and clinical care of patients with genetic predisposition for hematological malignancies. Familial Cancer 20:295–303. https://doi.org/10.1007/s10689-021-00263-z

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marcus K, Lelong C, Rabilloud T (2020) What room for two-dimensional gel-based proteomics in a shotgun proteomics world? Proteomes 8:17. https://doi.org/10.3390/proteomes8030017

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Fu Y, Zhang Y, Khoo BL (2021) Liquid biopsy technologies for hematological diseases. Med Res Rev 41:246–274. https://doi.org/10.1002/med.21731

    Article  PubMed  CAS  Google Scholar 

  8. Ummanni R, Mundt F, Pospisil H et al (2011) Identification of clinically relevant protein targets in prostate cancer with 2D-DIGE coupled mass spectrometry and systems biology network platform. PLoS One 6:e16833. https://doi.org/10.1371/journal.pone.0016833

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Reddy KRK, Dasari C, Duscharla D et al (2018) Dimethylarginine dimethylaminohydrolase-1 (DDAH1) is frequently upregulated in prostate cancer, and its overexpression conveys tumor growth and angiogenesis by metabolizing asymmetric dimethylarginine (ADMA). Angiogenesis 21:79–94. https://doi.org/10.1007/s10456-017-9587-0

    Article  PubMed  CAS  Google Scholar 

  10. Kami Reddy KR, Dasari C, Vandavasi S et al (2019) Novel cellularly active inhibitor regresses DDAH1 induced prostate tumor growth by restraining tumor angiogenesis through targeting DDAH1/ADMA/NOS pathway. ACS Comb Sci 21:241–256. https://doi.org/10.1021/acscombsci.8b00133

    Article  PubMed  CAS  Google Scholar 

  11. Forthun RB, Aasebø E, Rasinger JD et al (2018) Phosphoprotein DIGE profiles reflect blast differentiation, cytogenetic risk stratification, FLT3/NPM1 mutations and therapy response in acute myeloid leukaemia. J Proteome 173:32–41. https://doi.org/10.1016/j.jprot.2017.11.014

    Article  CAS  Google Scholar 

  12. Hu J, Lin M, Liu T et al (2011) DIGE-based proteomic analysis identifies nucleophosmin/B23 and nucleolin C23 as over-expressed proteins in relapsed/refractory acute leukemia. Leuk Res 35:1087–1092. https://doi.org/10.1016/j.leukres.2011.01.010

    Article  PubMed  CAS  Google Scholar 

  13. Ma T-Z, Piao Z, Jin S-Y, Kwak Y-G (2019) Differential expression of serum proteins in multiple myeloma. Exp Ther Med 17:649–656. https://doi.org/10.3892/etm.2018.7010

    Article  PubMed  CAS  Google Scholar 

  14. Saha S, Banerjee S, Banerjee D et al (2014) 2DGE and DIGE based proteomic study of malignant B-cells in B-cell acute lymphoblastic leukemia. EuPA Open Proteom 3:13–26. https://doi.org/10.1016/j.euprot.2014.01.002

    Article  CAS  Google Scholar 

  15. Podar K, Leleu X (2021) Relapsed/refractory multiple myeloma in 2020/2021 and beyond. Cancers 13:5154. https://doi.org/10.3390/cancers13205154

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. Rajpal R, Dowling P, Meiller J et al (2011) A novel panel of protein biomarkers for predicting response to thalidomide-based therapy in newly diagnosed multiple myeloma patients. Proteomics 11:1391–1402. https://doi.org/10.1002/pmic.201000471

    Article  PubMed  CAS  Google Scholar 

  17. Chanukuppa V, Taware R, Taunk K et al (2021) Proteomic alterations in multiple myeloma: a comprehensive study using bone marrow interstitial fluid and serum samples. Front Oncol 10:566804

    Article  PubMed  PubMed Central  Google Scholar 

  18. Kantarjian HM, Keating MJ, Freireich EJ (2018) Toward the potential cure of leukemias in the next decade. Cancer 124:4301–4313. https://doi.org/10.1002/cncr.31669

    Article  PubMed  Google Scholar 

  19. Forthun RB, Hellesøy M, Sulen A et al (2019) Modulation of phospho-proteins by interferon-alpha and valproic acid in acute myeloid leukemia. J Cancer Res Clin Oncol 145:1729–1749. https://doi.org/10.1007/s00432-019-02931-1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Gan D, Chen Y, Wu Z et al (2021) Doxorubicin/nucleophosmin binding protein-conjugated nanoparticle enhances anti-leukemia activity in acute lymphoblastic leukemia cells in vitro and in vivo. Front Pharmacol 12:607755. https://doi.org/10.3389/fphar.2021.607755

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Mugnaini EN, Ghosh N (2016) Lymphoma. Prim Care 43:661–675. https://doi.org/10.1016/j.pop.2016.07.012

    Article  PubMed  Google Scholar 

  22. Kj S, Jh P, Hj I, Sd A (2020) Survival and long-term toxicities of pediatric Hodgkin lymphoma after combined modality treatment: a single institute experience. Radiat Oncol J 38:198–206. https://doi.org/10.3857/roj.2020.00346

    Article  Google Scholar 

  23. Yeh JM, Diller L (2012) Pediatric Hodgkin lymphoma: trade-offs between short- and long-term mortality risks. Blood 120:2195–2202. https://doi.org/10.1182/blood-2012-02-409821

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Repetto O, Mussolin L, Elia C et al (2018) Proteomic identification of plasma biomarkers in children and adolescents with recurrent Hodgkin lymphoma. J Cancer 9:4650–4658. https://doi.org/10.7150/jca.27560

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Repetto O, Lovisa F, Elia C et al (2021) Proteomic exploration of plasma exosomes and other small extracellular vesicles in pediatric Hodgkin lymphoma: a potential source of biomarkers for relapse occurrence. Diagnostics 11:917. https://doi.org/10.3390/diagnostics11060917

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Fujii K, Suzuki N, Ikeda K et al (2012) Proteomic study identified HSP 70kDa protein 1A as a possible therapeutic target, in combination with histone deacetylase inhibitors, for lymphoid neoplasms. J Proteome 75:1401–1410. https://doi.org/10.1016/j.jprot.2011.11.010

    Article  CAS  Google Scholar 

  27. Fujii K, Idogawa M, Suzuki N et al (2021) Functional depletion of HSP72 by siRNA and quercetin enhances vorinostat-induced apoptosis in an HSP72-overexpressing cutaneous T-cell lymphoma cell line, Hut78. Int J Mol Sci 22:11258. https://doi.org/10.3390/ijms222011258

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgment

Research in the author’s laboratory has been supported by the Kathleen Lonsdale Institute for Human Health Research, Maynooth University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katie Dunphy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Dunphy, K., Dowling, P. (2023). DIGE-Based Biomarker Discovery in Blood Cancers. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 2596. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2831-7_8

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2831-7_8

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2830-0

  • Online ISBN: 978-1-0716-2831-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics