Skip to main content

Top-Down Proteomics and Comparative 2D-DIGE Analysis

  • Protocol
  • First Online:
Difference Gel Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2596))

Abstract

The combination of large-scale protein separation techniques, sophisticated mass spectrometry, and systems bioinformatics has led to the establishment of proteomics as a distinct discipline within the wider field of protein biochemistry. Both discovery proteomics and targeted proteomics are widely used in biological and biomedical research, whereby the analytical approaches can be broadly divided into proteoform-centric top-down proteomics versus peptide-centric bottom-up proteomics. This chapter outlines the scientific value of top-down proteomics and describes how fluorescence two-dimensional difference gel electrophoresis can be combined with the systematic analysis of crucial post-translational modifications. The concept of on-membrane digestion following the electrophoretic transfer of proteins and the usefulness of comparative two-dimensional immunoblotting are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bludau I, Aebersold R (2020) Proteomic and interactomic insights into the molecular basis of cell functional diversity. Nat Rev Mol Cell Biol 21:327–340

    Article  PubMed  CAS  Google Scholar 

  2. Cox J, Mann M (2011) Quantitative, high-resolution proteomics for data-driven systems biology. Annu Rev Biochem 80:273–299

    Article  PubMed  CAS  Google Scholar 

  3. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347–355

    Article  PubMed  CAS  Google Scholar 

  4. Manes NP, Nita-Lazar A (2018) Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteome 189:75–90

    Article  CAS  Google Scholar 

  5. Monti C, Zilocchi M, Colugnat I, Alberio T (2019) Proteomics turns functional. J Proteome 198:36–44

    Article  CAS  Google Scholar 

  6. Uversky VN (2019) Protein intrinsic disorder and structure-function continuum. Prog Mol Biol Transl Sci 166:1–17

    Article  PubMed  CAS  Google Scholar 

  7. Aggarwal S, Tolani P, Gupta S, Yadav AK (2021) Posttranslational modifications in systems biology. Adv Protein Chem Struct Biol 127:93–126

    Article  PubMed  CAS  Google Scholar 

  8. Dupree EJ, Jayathirtha M, Yorkey H, Mihasan M, Petre BA, Darie CC (2020) A critical review of bottom-up proteomics: the good, the bad, and the future of this field. Proteomes 8:14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Duong VA, Park JM, Lee H (2020) Review of three-dimensional liquid chromatography platforms for bottom-up proteomics. Int J Mol Sci 21:1524

    Article  PubMed Central  CAS  Google Scholar 

  10. Révész Á, Hevér H, Steckel A, Schlosser G, Szabó D, Vékey K, Drahos L (2021) Collision energies: optimization strategies for bottom-up proteomics. Mass Spectrom Rev 2:e21763

    Google Scholar 

  11. Padula MP, Berry IJ, O’Rourke MB, Raymond BB, Santos J, Djordjevic SP (2017) A comprehensive guide for performing sample preparation and top-down protein analysis. Proteomes 5:11

    Article  PubMed Central  Google Scholar 

  12. Dowling P, Zweyer M, Swandulla D, Ohlendieck K (2019) Characterization of contractile proteins from skeletal muscle using gel-based top-down proteomics. Proteomes 7:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  13. Cupp-Sutton KA, Wu S (2020) High-throughput quantitative top-down proteomics. Mol Omics 16:91–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Minden JS, Dowd SR, Meyer HE, Stühler K (2009) Difference gel electrophoresis. Electrophoresis 30:S156–S161

    Article  PubMed  Google Scholar 

  15. Arentz G, Weiland F, Oehler MK, Hoffmann P (2015) State of the art of 2D DIGE. Proteomics Clin Appl 9:277–288

    Article  PubMed  CAS  Google Scholar 

  16. Blundon M, Ganesan V, Redler B, Van PT, Minden JS (2019) Two-dimensional difference gel electrophoresis. Methods Mol Biol 1855:229–247

    Article  PubMed  CAS  Google Scholar 

  17. Carbonara K, Andonovski M, Coorssen JR (2021) Proteomes are of proteoforms: embracing the complexity. Proteomes 9:38

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Schaffer LV, Millikin RJ, Miller RM, Anderson LC, Fellers RT, Ge Y, Kelleher NL, LeDuc RD, Liu X, Payne SH, Sun L, Thomas PM, Tucholski T, Wang Z, Wu S, Wu Z, Yu D, Shortreed MR, Smith LM (2019) Identification and quantification of proteoforms by mass spectrometry. Proteomics 19:e1800361

    Article  PubMed  PubMed Central  Google Scholar 

  19. Brown KA, Melby JA, Roberts DS, Ge Y (2020) Top-down proteomics: challenges, innovations, and applications in basic and clinical research. Expert Rev Proteomics 17:719–733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Webb IK (2022) Recent technological developments for native mass spectrometry. Biochim Biophys Acta Proteins Proteomics 1870:140732

    Article  PubMed  CAS  Google Scholar 

  21. Ang MY, Low TY, Lee PY, Wan Mohamad Nazarie WF, Guryev V, Jamal R (2019) Proteogenomics: from next-generation sequencing (NGS) and mass spectrometry-based proteomics to precision medicine. Clin Chim Acta 498:38–46

    Article  PubMed  CAS  Google Scholar 

  22. Bose U, Wijffels G, Howitt CA, Colgrave ML (2019) Proteomics: tools of the trade. Adv Exp Med Biol 1073:1–22

    Article  PubMed  CAS  Google Scholar 

  23. Melby JA, Roberts DS, Larson EJ, Brown KA, Bayne EF, Jin S, Ge Y (2021) Novel strategies to address the challenges in top-down proteomics. J Am Soc Mass Spectrom 32:1278–1294

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  24. Dowling P, Gargan S, Zweyer M, Henry M, Meleady P, Swandulla D, Ohlendieck K (2020) Protocol for the bottom-up proteomic analysis of mouse spleen. STAR Protoc 1:100196

    Article  PubMed  PubMed Central  Google Scholar 

  25. Boeri Erba E, Signor L, Petosa C (2020) Exploring the structure and dynamics of macromolecular complexes by native mass spectrometry. J Proteome 222:103799

    Article  CAS  Google Scholar 

  26. Tamara S, den Boer MA, Heck AJR (2022) High-resolution native mass spectrometry. Chem Rev 122:7269–7326. https://doi.org/10.1021/acs.chemrev.1c00212

  27. Murphy S, Zweyer M, Mundegar RR, Swandulla D, Ohlendieck K (2018) Proteomic serum biomarkers for neuromuscular diseases. Expert Rev Proteomics 15:277–291

    Article  PubMed  CAS  Google Scholar 

  28. Hristova VA, Chan DW (2019) Cancer biomarker discovery and translation: proteomics and beyond. Expert Rev Proteomics 16:93–103

    Article  PubMed  CAS  Google Scholar 

  29. Mann SP, Treit PV, Geyer PE, Omenn GS, Mann M (2021) Ethical principles, constraints and opportunities in clinical proteomics. Mol Cell Proteomics 20:100046

    Article  PubMed Central  CAS  Google Scholar 

  30. Görg A, Weiss W, Dunn MJ (2004) Current two-dimensional electrophoresis technology for proteomics. Proteomics 4:3665–3685

    Article  PubMed  Google Scholar 

  31. Friedman DB, Hoving S, Westermeier R (2009) Isoelectric focusing and two-dimensional gel electrophoresis. Methods Enzymol 463:515–540

    Article  PubMed  CAS  Google Scholar 

  32. Westermeier R (2014) Looking at proteins from two dimensions: a review on five decades of 2D electrophoresis. Arch Physiol Biochem 120:168–172

    Article  PubMed  CAS  Google Scholar 

  33. Carrette O, Burkhard PR, Sanchez JC, Hochstrasser DF (2006) State-of-the-art two-dimensional gel electrophoresis: a key tool of proteomics research. Nat Protoc 1:812–823

    Article  PubMed  CAS  Google Scholar 

  34. Rabilloud T, Lelong C (2011) Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteome 74:1829–1841

    Article  CAS  Google Scholar 

  35. Lee PY, Saraygord-Afshari N, Low TY (2020) The evolution of two-dimensional gel electrophoresis – from proteomics to emerging alternative applications. J Chromatogr A 1615:460763

    Article  PubMed  CAS  Google Scholar 

  36. Kondo T (2019) Cancer biomarker development and two-dimensional difference gel electrophoresis (2D-DIGE). Biochim Biophys Acta Proteins Proteomics 1867:2–8

    Article  PubMed  CAS  Google Scholar 

  37. Westermeier R (2016) 2D gel-based proteomics: there's life in the old dog yet. Arch Physiol Biochem 122:236–237

    Article  PubMed  CAS  Google Scholar 

  38. Zhan X, Li B, Zhan X, Schlüter H, Jungblut PR, Coorssen JR (2019) Innovating the concept and practice of two-dimensional gel electrophoresis in the analysis of proteomes at the proteoform level. Proteomes 7:36

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Marcus K, Lelong C, Rabilloud T (2020) What room for two-dimensional gel-based proteomics in a shotgun proteomics world? Proteomes 8:17

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. Rabilloud T, Chevallet M, Luche S, Lelong C (2010) Two-dimensional gel electrophoresis in proteomics: past, present and future. J Proteome 73:2064–2077

    Article  CAS  Google Scholar 

  41. Oliveira BM, Coorssen JR, Martins-de-Souza D (2014) 2DE: the phoenix of proteomics. J Proteome 104:140–150

    Article  CAS  Google Scholar 

  42. Murphy S, Dowling P, Ohlendieck K (2016) Comparative skeletal muscle proteomics using two-dimensional gel electrophoresis. Proteomes 4:27

    Article  PubMed Central  Google Scholar 

  43. Timms JF, Cramer R (2008) Difference gel electrophoresis. Proteomics 8:4886–4897

    Article  PubMed  CAS  Google Scholar 

  44. Goldring JPD (2019) Measuring protein concentration with absorbance, Lowry, Bradford Coomassie blue, or the Smith bicinchoninic acid assay before electrophoresis. Methods Mol Biol 1855:31–39

    Article  PubMed  CAS  Google Scholar 

  45. Backman L, Persson K (2018) The no-nonsens SDS-PAGE. Methods Mol Biol 1721:89–94

    Article  PubMed  CAS  Google Scholar 

  46. Brunelle JL, Green R (2014) One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol 541:151–159

    Article  PubMed  CAS  Google Scholar 

  47. Wittig I, Schägger H (2009) Native electrophoretic techniques to identify protein-protein interactions. Proteomics 9:5214–5223

    Article  PubMed  CAS  Google Scholar 

  48. Iacobucci I, Monaco V, Cozzolino F, Monti M (2021) From classical to new generation approaches: an excursus of -omics methods for investigation of protein-protein interaction networks. J Proteome 230:103990

    Article  CAS  Google Scholar 

  49. Paulo JA (2016) Sample preparation for proteomic analysis using a GeLC-MS/MS strategy. J Biol Methods 3:e45

    Article  PubMed  PubMed Central  Google Scholar 

  50. Murphy S, Ohlendieck K (2018) Proteomic profiling of large myofibrillar proteins from dried and long-term stored polyacrylamide gels. Anal Biochem 543:8–11

    Article  PubMed  CAS  Google Scholar 

  51. Murphy S, Henry M, Meleady P, Ohlendieck K (2018) Utilization of dried and long-term stored polyacrylamide gels for the advanced proteomic profiling of mitochondrial contact sites from rat liver. Biol Methods Protoc 3:bpy008

    Article  PubMed  PubMed Central  Google Scholar 

  52. Zahedi RP, Moebius J, Sickmann A (2007) Two-dimensional BAC/SDS-PAGE for membrane proteomics. Subcell Biochem 43:13–20

    Article  PubMed  Google Scholar 

  53. Sunderhaus S, Eubel H, Braun HP (2007) Two-dimensional blue native/blue native polyacrylamide gel electrophoresis for the characterization of mitochondrial protein complexes and supercomplexes. Methods Mol Biol 372:315–324

    Article  PubMed  CAS  Google Scholar 

  54. Fernandez-Vizarra E, Zeviani M (2021) Blue-native electrophoresis to study the OXPHOS complexes. Methods Mol Biol 2192:287–311

    Article  PubMed  CAS  Google Scholar 

  55. Froemming GR, Murray BE, Ohlendieck K (1999) Self-aggregation of triadin in the sarcoplasmic reticulum of rabbit skeletal muscle. Biochim Biophys Acta 1418:197–205

    Article  PubMed  CAS  Google Scholar 

  56. Froemming GR, Ohlendieck K (2001) Native skeletal muscle dihydropyridine receptor exists as a supramolecular triad complex. Cell Mol Life Sci 58:312–320

    Article  PubMed  CAS  Google Scholar 

  57. Noaman N, Abbineni PS, Withers M, Coorssen JR (2017) Coomassie staining provides routine (sub)femtomole in-gel detection of intact proteoforms: expanding opportunities for genuine top-down proteomics. Electrophoresis 38:3086–3099

    Article  PubMed  CAS  Google Scholar 

  58. Noaman N, Coorssen JR (2018) Coomassie does it (better): a Robin Hood approach to total protein quantification. Anal Biochem 556:53–56

    Article  PubMed  CAS  Google Scholar 

  59. Panfoli I, Calzia D, Santucci L, Ravera S, Bruschi M, Candiano G (2012) A blue dive: from ‘blue fingers’ to ‘blue silver’. A comparative overview of staining methods for in-gel proteomics. Expert Rev Proteomics 9:627–634

    Article  PubMed  CAS  Google Scholar 

  60. Sundaram P (2018) Protein stains and applications. Methods Mol Biol 1853:1–14

    Article  PubMed  CAS  Google Scholar 

  61. Hoogland C, Mostaguir K, Appel RD, Lisacek F (2008) The World-2DPAGE Constellation to promote and publish gel-based proteomics data through the ExPASy server. J Proteome 71:245–248

    Article  CAS  Google Scholar 

  62. Viswanathan S, Unlü M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1:1351–1358

    Article  PubMed  CAS  Google Scholar 

  63. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44

    Article  PubMed  CAS  Google Scholar 

  64. Karp NA, Kreil DP, Lilley KS (2004) Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis. Proteomics 4:1421–1432

    Article  PubMed  CAS  Google Scholar 

  65. Carberry S, Zweyer M, Swandulla D, Ohlendieck K (2013) Application of fluorescence two-dimensional difference in-gel electrophoresis as a proteomic biomarker discovery tool in muscular dystrophy research. Biology (Basel) 2:1438–1464

    Google Scholar 

  66. Zweyer M, Sabir H, Dowling P, Gargan S, Murphy S, Swandulla D, Ohlendieck K (2022) Histopathology of Duchenne muscular dystrophy in correlation with changes in proteomic biomarkers. Histol Histopathol 37:101–116. https://doi.org/10.14670/HH-18-403

  67. Karp NA, Lilley KS (2005) Maximising sensitivity for detecting changes in protein expression: experimental design using minimal CyDyes. Proteomics 5:3105–3115

    Article  PubMed  CAS  Google Scholar 

  68. Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  Google Scholar 

  69. Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396

    Article  PubMed  CAS  Google Scholar 

  70. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    Article  PubMed  CAS  Google Scholar 

  71. Doran P, Wilton SD, Fletcher S, Ohlendieck K (2009) Proteomic profiling of antisense-induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic mdx diaphragm. Proteomics 9:671–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Courchesne PL, Luethy R, Patterson SD (1997) Comparison of in- gel and on-membrane digestion methods at low to sub-pmol level for subsequent peptide and fragment-ion mass analysis using matrix-assisted laser-desorption/ionization mass spectrometry. Electrophoresis 18:369–381

    Article  PubMed  CAS  Google Scholar 

  73. Speicher KD, Kolbas O, Harper S, Speicher DW (2000) Systematic analysis of peptide recoveries from in-gel digestions for protein identifications in proteome studies. J Biomol Tech 11:74–86

    PubMed  PubMed Central  CAS  Google Scholar 

  74. Finehout EJ, Lee KH (2003) Comparison of automated in-gel digest methods for femtomole level samples. Electrophoresis 24:3508–3516

    Article  PubMed  CAS  Google Scholar 

  75. Granvogl B, Plöscher M, Eichacker LA (2007) Sample preparation by in-gel digestion for mass spectrometry-based proteomics. Anal Bioanal Chem 389:991–1002

    Article  PubMed  CAS  Google Scholar 

  76. Ino Y, Hirano H (2011) Mass spectrometric characterization of proteins transferred from polyacrylamide gels to membrane filters. FEBS J 278:3807–3814

    Article  PubMed  CAS  Google Scholar 

  77. Simspon RJ (2011) On-membrane proteolytic digestion of electroblotted proteins. Cold Spring Harb Protoc 2011:995–997

    Article  PubMed  Google Scholar 

  78. Ohlendieck K (2013) On-membrane digestion technology for muscle proteomics. J Membr Sep Technol 2:1–12

    CAS  Google Scholar 

  79. Doran P, Martin G, Dowling P, Jockusch H, Ohlendieck K (2006) Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP. Proteomics 6:4610–4621

    Article  PubMed  CAS  Google Scholar 

  80. McDonagh B (2009) Immunoblotting 2DE membranes. Methods Mol Biol 519:103–109

    Article  PubMed  CAS  Google Scholar 

  81. Grzelak S, Stachyra A, Moskwa B, Bień-Kalinowska J (2021) Exploiting the potential of 2D DIGE and 2DE immunoblotting for comparative analysis of crude extract of Trichinella britovi and Trichinella spiralis muscle larvae proteomes. Vet Parasitol 289:109323

    Article  PubMed  CAS  Google Scholar 

  82. Motani K, Kosako H (2019) Phosphoproteomic identification and functional characterization of protein kinase substrates by 2D-DIGE and Phos-tag PAGE. Biochim Biophys Acta Proteins Proteomics 1867:57–61

    Article  PubMed  CAS  Google Scholar 

  83. Lamoureux L, Simon SLR, Waitt B, Knox JD (2018) Proteomic screen of brain glycoproteome reveals prion specific marker of pathogenesis. Proteomics 18:1700296. https://doi.org/10.1002/pmic.201700296

  84. Weiss W, Gorg A (2009) High-resolution two-dimensional electrophoresis. Methods Mol Biol 564:13–32

    Article  PubMed  CAS  Google Scholar 

  85. Steinberg TH (2009) Protein gel staining methods: an introduction and overview. Methods Enzymol 463:541–563

    Article  PubMed  CAS  Google Scholar 

  86. Li X, Franz T, Atanassov I, Colby T (2021) Step-by-step sample preparation of proteins for mass spectrometric analysis. Methods Mol Biol 2261:13–23

    Article  PubMed  CAS  Google Scholar 

  87. Gannon J, Staunton L, O'Connell K, Doran P, Ohlendieck K (2008) Phosphoproteomic analysis of aged skeletal muscle. Int J Mol Med 22:33–42

    PubMed  CAS  Google Scholar 

  88. Steinberger B, Mayrhofer C (2015) Principles and examples of gel-based approaches for phosphoprotein analysis. Methods Mol Biol 1295:305–321

    Article  PubMed  CAS  Google Scholar 

  89. Gauci VJ, Wright EP, Coorssen JR (2011) Quantitative proteomics: assessing the spectrum of in-gel protein detection methods. J Chem Biol 4:3–29

    Article  PubMed  Google Scholar 

  90. Litovchick L (2020) Staining the blot for total protein with Ponceau S. Cold Spring Harb Protoc 2020:098459

    Article  PubMed  Google Scholar 

  91. O'Connell K, Doran P, Gannon J, Ohlendieck K (2008) Lectin-based proteomic profiling of aged skeletal muscle: decreased pyruvate kinase isozyme M1 exhibits drastically increased levels of N-glycosylation. Eur J Cell Biol 87:793–805

    Article  PubMed  CAS  Google Scholar 

  92. Doran P, Gannon J, O'Connell K, Ohlendieck K (2007) Aging skeletal muscle shows a drastic increase in the small heat shock proteins alphaB-crystallin/HspB5 and cvHsp/HspB7. Eur J Cell Biol 86:629–640

    Article  PubMed  CAS  Google Scholar 

  93. Lewis C, Ohlendieck K (2010) Mass spectrometric identification of dystrophin isoform Dp427 by on-membrane digestion of sarcolemma from skeletal muscle. Anal Biochem 404:197–203

    Article  PubMed  CAS  Google Scholar 

  94. Hermann J, Schurgers L, Jankowski V (2022) Identification and characterization of post-translational modifications: clinical implications. Mol Asp Med 12:101066

    Article  Google Scholar 

  95. Yang F, Wang C (2021) Profiling of post-translational modifications by chemical and computational proteomics. Chem Commun (Camb) 56:13506–13519

    Article  Google Scholar 

  96. Keenan EK, Zachman DK, Hirschey MD (2021) Discovering the landscape of protein modifications. Mol Cell 81:1868–1878

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Baker HA, Bernardini JP (2021) It's not just a phase; ubiquitination in cytosolic protein quality control. Biochem Soc Trans 49:365–377

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  98. Dani D, Dencher NA (2008) Native-DIGE: a new look at the mitochondrial membrane proteome. Biotechnol J 3:817–822

    Article  PubMed  CAS  Google Scholar 

  99. Kuter K, Kratochwil M, Marx SH, Hartwig S, Lehr S, Sugawa MD, Dencher NA (2016) Native DIGE proteomic analysis of mitochondria from substantia nigra and striatum during neuronal degeneration and its compensation in an animal model of early Parkinson's disease. Arch Physiol Biochem 122:238–256

    Article  PubMed  CAS  Google Scholar 

  100. Dani D, Dencher NA (2008) Native DIGE: efficient tool to elucidate protein interactomes. Methods Mol Biol 1664:53–68

    Article  Google Scholar 

  101. Zhou YY, Chun RKM, Wang JC, Zuo B, Li KK, Lam TC, Liu Q, To CH (2018) Proteomic analysis of chick retina during early recovery from lens-induced myopia. Mol Med Rep 18:59–66

    PubMed  PubMed Central  CAS  Google Scholar 

  102. Low TY, Mohtar MA, Lee PY, Omar N, Zhou H, Ye M (2021) Widening the bottleneck of phosphoproteomics: evolving strategies for phosphopeptide enrichment. Mass Spectrom Rev 40:309–333

    Article  PubMed  CAS  Google Scholar 

  103. Hurd TR, James AM, Lilley KS, Murphy MP (2009) Chapter 19: Measuring redox changes to mitochondrial protein thiols with redox difference gel electrophoresis (redox-DIGE). Methods Enzymol 456:343–361

    Article  PubMed  CAS  Google Scholar 

  104. Majewska AM, Mostek A (2021) Gel-based fluorescent proteomic tools for investigating cell redox signaling. A mini-review. Electrophoresis 42:1378–1387

    Article  PubMed  CAS  Google Scholar 

  105. Blottner D, Capitanio D, Trautmann G, Furlan S, Gambara G, Moriggi M, Block K, Barbacini P, Torretta E, Py G, Chopard A, Vida I, Volpe P, Gelfi C, Salanova M (2021) Nitrosative redox homeostasis and antioxidant response defense in disused vastus lateralis muscle in long-term bedrest (Toulouse Cocktail Study). Antioxidants (Basel) 10:378

    Article  CAS  Google Scholar 

  106. Chouchani ET, Hurd TR, Nadtochiy SM, Brookes PS, Fearnley IM, Lilley KS, Smith RA, Murphy MP (2010) Identification of S-nitrosated mitochondrial proteins by S-nitrosothiol difference in gel electrophoresis (SNO-DIGE): implications for the regulation of mitochondrial function by reversible S-nitrosation. Biochem J 430:49–59

    Article  PubMed  CAS  Google Scholar 

  107. Heidler J, Valek L, Wittig I, Tegeder I (2018) Redox-proteomes of human NOS1-transduced versus MOCK SH-SY5Y neuroblastoma cells under full nutrition, serum-free starvation, and rapamycin treatment. Data Brief 21:1302–1308

    Article  PubMed  PubMed Central  Google Scholar 

  108. Ichihara S, Suzuki Y, Chang J, Kuzuya K, Inoue C, Kitamura Y, Oikawa S (2017) Involvement of oxidative modification of proteins related to ATP synthesis in the left ventricles of hamsters with cardiomyopathy. Sci Rep 7:9243

    Article  PubMed  PubMed Central  Google Scholar 

  109. Wang J, Liu Y, Tang L, Qi S, Mi Y, Liu D, Tian Q (2017) Identification of candidate substrates of ubiquitin-specific protease 13 using 2D-DIGE. Int J Mol Med 40:47–56

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Research in the author’s laboratory has been supported by a project grant from the Kathleen Lonsdale Institute for Human Health Research, Maynooth University, and equipment funding under the Research Infrastructure Call 2012 by Science Foundation Ireland (SFI-12/RI/2346/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Ohlendieck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ohlendieck, K. (2023). Top-Down Proteomics and Comparative 2D-DIGE Analysis. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 2596. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2831-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2831-7_2

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2830-0

  • Online ISBN: 978-1-0716-2831-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics