Skip to main content

Comparative 3-Sample 2D-DIGE Analysis of Skeletal Muscles

  • Protocol
  • First Online:
Difference Gel Electrophoresis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2596))

Abstract

The skeletal muscle proteome consists of a large number of diverse protein species with a broad and dynamic concentration range. Since mature skeletal muscles are characterized by a distinctive combination of contractile cells with differing physiological and biochemical properties, it is essential to determine specific differences in the protein composition of fast, slow, and hybrid fibers. Fluorescence two-dimensional difference gel electrophoresis (2D-DIGE) is a powerful comparative tool to analyze fiber type-specific differences between predominantly fast contracting versus slower twitching muscles. In this chapter, the application of the 2D-DIGE method for the comparative analysis of different subtypes of skeletal muscles is outlined in detail. A standardized proteomic workflow is described, involving sample preparation, protein extraction, differential fluorescence labeling using a 3-CyDye system, first-dimension isoelectric focusing, second-dimension slab gel electrophoresis, 2D-DIGE image analysis, protein digestion, and mass spectrometry.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mukund K, Subramaniam S (2020) Skeletal muscle: a review of molecular structure and function, in health and disease. Wiley Interdiscip Rev Syst Biol Med 12:e1462

    Article  PubMed  Google Scholar 

  2. Spangenburg EE, Booth FW (2003) Molecular regulation of individual skeletal muscle fibre types. Acta Physiol Scand 178:413–424

    Article  PubMed  CAS  Google Scholar 

  3. Schiaffino S, Reggiani C (2011) Fiber types in mammalian skeletal muscles. Physiol Rev 91:1447–1531

    Article  PubMed  CAS  Google Scholar 

  4. Sawano S, Mizunoya W (2022) History and development of staining methods for skeletal muscle fiber types. Histol Histopathol 37:493–503

    Google Scholar 

  5. Wells GD, Selvadurai H, Tein I (2009) Bioenergetic provision of energy for muscular activity. Paediatr Respir Rev 10:83–90

    Article  PubMed  Google Scholar 

  6. Blaauw B, Schiaffino S, Reggiani C (2013) Mechanisms modulating skeletal muscle phenotype. Compr Physiol 3:1645–1687

    Article  PubMed  Google Scholar 

  7. Frontera WR, Ochala J (2015) Skeletal muscle: a brief review of structure and function. Calcif Tissue Int 96:183–195

    Article  PubMed  CAS  Google Scholar 

  8. Tobias IS, Galpin AJ (2020) Moving human muscle physiology research forward: an evaluation of fiber type-specific protein research methodologies. Am J Physiol Cell Physiol 319:C858–C876

    Article  PubMed  CAS  Google Scholar 

  9. Murgia M, Nagaraj N, Deshmukh AS, Zeiler M, Cancellara P, Moretti I, Reggiani C, Schiaffino S, Mann M (2015) Single muscle fiber proteomics reveals unexpected mitochondrial specialization. EMBO Rep 16:387–395

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Eggers B, Schork K, Turewicz M, Barkovits K, Eisenacher M, Schröder R, Clemen CS, Marcus K (2021) Advanced fiber type-specific protein profiles derived from adult murine skeletal muscle. Proteomes 9:28

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  11. Murgia M, Nogara L, Baraldo M, Reggiani C, Mann M, Schiaffino S (2021) Protein profile of fiber types in human skeletal muscle: a single-fiber proteomics study. Skelet Muscle 11:24

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Schiaffino S, Reggiani C, Murgia M (2020) Fiber type diversity in skeletal muscle explored by mass spectrometry-based single fiber proteomics. Histol Histopathol 35:239–246

    PubMed  CAS  Google Scholar 

  13. Rabilloud T, Lelong C (2011) Two-dimensional gel electrophoresis in proteomics: a tutorial. J Proteome 74:1829–1841

    Article  CAS  Google Scholar 

  14. Oliveira BM, Coorssen JR, Martins-de-Souza D (2014) 2DE: the phoenix of proteomics. J Proteome 104:140–150

    Article  CAS  Google Scholar 

  15. Westermeier R (2014) Looking at proteins from two dimensions: a review on five decades of 2D electrophoresis. Arch Physiol Biochem 120:168–172

    Article  PubMed  CAS  Google Scholar 

  16. Lee PY, Saraygord-Afshari N, Low TY (2020) The evolution of two-dimensional gel electrophoresis – from proteomics to emerging alternative applications. J Chromatogr A 1615:460763

    Article  PubMed  CAS  Google Scholar 

  17. Reed PW, Densmore A, Bloch RJ (2012) Optimization of large gel 2D electrophoresis for proteomic studies of skeletal muscle. Electrophoresis 33:1263–1270

    Article  PubMed  CAS  Google Scholar 

  18. Murphy S, Dowling P, Ohlendieck K (2016) Comparative skeletal muscle proteomics using two-dimensional gel electrophoresis. Proteomes 4:27

    Article  PubMed Central  Google Scholar 

  19. Dowling P, Zweyer M, Swandulla D, Ohlendieck K (2019) Characterization of contractile proteins from skeletal muscle using gel-based top-down proteomics. Proteomes 7:25

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Minden JS, Dowd SR, Meyer HE, Stühler K (2009) Difference gel electrophoresis. Electrophoresis 30:S156–S161

    Article  PubMed  Google Scholar 

  21. Timms JF, Cramer R (2008) Difference gel electrophoresis. Proteomics 8:4886–4897

    Article  PubMed  CAS  Google Scholar 

  22. Arentz G, Weiland F, Oehler MK, Hoffmann P (2015) State of the art of 2D DIGE. Proteomics Clin Appl 9:277–288

    Article  PubMed  CAS  Google Scholar 

  23. Blundon M, Ganesan V, Redler B, Van PT, Minden JS (2019) Two-dimensional difference gel electrophoresis. Methods Mol Biol 1855:229–247

    Article  PubMed  CAS  Google Scholar 

  24. Unlü M, Morgan ME, Minden JS (1997) Difference gel electrophoresis: a single gel method for detecting changes in protein extracts. Electrophoresis 18:2071–2077

    Article  PubMed  Google Scholar 

  25. Alban A, David SO, Bjorkesten L, Andersson C, Sloge E, Lewis S, Currie I (2003) A novel experimental design for comparative two-dimensional gel analysis: two-dimensional difference gel electrophoresis incorporating a pooled internal standard. Proteomics 3:36–44

    Article  PubMed  CAS  Google Scholar 

  26. Karp NA, Lilley KS (2005) Maximising sensitivity for detecting changes in protein expression: experimental design using minimal CyDyes. Proteomics 5:3105–3115

    Article  PubMed  CAS  Google Scholar 

  27. Viswanathan S, Unlü M, Minden JS (2006) Two-dimensional difference gel electrophoresis. Nat Protoc 1:1351–1358

    Article  PubMed  CAS  Google Scholar 

  28. Tonge R, Shaw J, Middleton B, Rowlinson R, Rayner S, Young J, Pognan F, Hawkins E, Currie I, Davison M (2001) Validation and development of fluorescence two-dimensional differential gel electrophoresis proteomics technology. Proteomics 1:377–396

    Article  PubMed  CAS  Google Scholar 

  29. Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    Article  PubMed  CAS  Google Scholar 

  30. Goldfarb M (2007) Computer analysis of two-dimensional gels. J Biomol Tech 18:143–146

    PubMed  PubMed Central  Google Scholar 

  31. Karp NA, Kreil DP, Lilley KS (2004) Determining a significant change in protein expression with DeCyder during a pair-wise comparison using two-dimensional difference gel electrophoresis. Proteomics 4:1421–1432

    Article  PubMed  CAS  Google Scholar 

  32. Malm C, Hadrevi J, Bergström SA, Pedrosa-Domellöf F, Antti H, Svensson M, Frängsmyr L (2008) Evaluation of 2-D DIGE for skeletal muscle: protocol and repeatability. Scand J Clin Lab Invest 68:793–800

    Article  PubMed  CAS  Google Scholar 

  33. Carberry S, Zweyer M, Swandulla D, Ohlendieck K (2013) Application of fluorescence two-dimensional difference in-gel electrophoresis as a proteomic biomarker discovery tool in muscular dystrophy research. Biology (Basel) 2:1438–1464

    Google Scholar 

  34. Hadrévi J, Hellström F, Kieselbach T, Malm C, Pedrosa-Domellöf F (2011) Protein differences between human trapezius and vastus lateralis muscles determined with a proteomic approach. BMC Musculoskelet Disord 12:181

    Article  PubMed  PubMed Central  Google Scholar 

  35. Donoghue P, Doran P, Wynne K, Pedersen K, Dunn MJ, Ohlendieck K (2007) Proteomic profiling of chronic low-frequency stimulated fast muscle. Proteomics 7:3417–3430

    Article  PubMed  CAS  Google Scholar 

  36. O’Connell K, Ohlendieck K (2009) Proteomic DIGE analysis of the mitochondria-enriched fraction from aged rat skeletal muscle. Proteomics 9:5509–5524

    Article  PubMed  Google Scholar 

  37. Glancy B, Balaban RS (2011) Protein composition and function of red and white skeletal muscle mitochondria. Am J Physiol Cell Physiol 300:C1280–C1290

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Moriggi M, Cassano P, Vasso M, Capitanio D, Fania C, Musicco C, Pesce V, Gadaleta MN, Gelfi C (2008) A DIGE approach for the assessment of rat soleus muscle changes during unloading: effect of acetyl-L-carnitine supplementation. Proteomics 8:3588–3604

    Article  PubMed  CAS  Google Scholar 

  39. Blottner D, Capitanio D, Trautmann G, Furlan S, Gambara G, Moriggi M, Block K, Barbacini P, Torretta E, Py G, Chopard A, Vida I, Volpe P, Gelfi C, Salanova M (2021) Nitrosative redox homeostasis and antioxidant response defense in disused vastus lateralis muscle in long-term bedrest (Toulouse Cocktail Study). Antioxidants (Basel) 10:378

    Article  CAS  Google Scholar 

  40. Moriggi M, Vasso M, Fania C, Capitanio D, Bonifacio G, Salanova M, Blottner D, Rittweger J, Felsenberg D, Cerretelli P, Gelfi C (2010) Long term bed rest with and without vibration exercise countermeasures: effects on human muscle protein dysregulation. Proteomics 10:3756–3774

    Article  PubMed  CAS  Google Scholar 

  41. Moriggi M, Vasso M, Fania C, Capitanio D, Bonifacio G, Salanova M, Blottner D, Rittweger J, Felsenberg D, Cerretelli P, Gelfi C (2007) Metabolic modulation induced by chronic hypoxia in rats using a comparative proteomic analysis of skeletal muscle tissue. J Proteome Res 6:1974–1984

    Article  PubMed  Google Scholar 

  42. Viganò A, Ripamonti M, De Palma S, Capitanio D, Vasso M, Wait R, Lundby C, Cerretelli P, Gelfi C (2008) Proteins modulation in human skeletal muscle in the early phase of adaptation to hypobaric hypoxia. Proteomics 8:4668–4679

    Article  PubMed  Google Scholar 

  43. Chen K, Cole RB, Rees BB (2013) Hypoxia-induced changes in the zebrafish (Danio rerio) skeletal muscle proteome. J Proteome 78:477–485

    Article  CAS  Google Scholar 

  44. Yamaguchi W, Fujimoto E, Higuchi M, Tabata I (2010) A DIGE proteomic analysis for high-intensity exercise-trained rat skeletal muscle. J Biochem 148:327–333

    Article  PubMed  CAS  Google Scholar 

  45. Egan B, Dowling P, O’Connor PL, Henry M, Meleady P, Zierath JR, O’Gorman DJ (2011) 2-D DIGE analysis of the mitochondrial proteome from human skeletal muscle reveals time course-dependent remodelling in response to 14 consecutive days of endurance exercise training. Proteomics 11:1413–1428

    Article  PubMed  CAS  Google Scholar 

  46. Hody S, Lacrosse Z, Leprince P, Collodoro M, Croisier JL, Rogister B (2013) Effects of eccentrically and concentrically biased training on mouse muscle phenotype. Med Sci Sports Exerc 45(8):1460–1468

    Article  PubMed  CAS  Google Scholar 

  47. Burniston JG, Kenyani J, Gray D, Guadagnin E, Jarman IH, Cobley JN, Cuthbertson DJ, Chen YW, Wastling JM, Lisboa PJ, Koch LG, Britton SL (2014) Conditional independence mapping of DIGE data reveals PDIA3 protein species as key nodes associated with muscle aerobic capacity. J Proteome 106:230–245

    Article  CAS  Google Scholar 

  48. Yu JG, Isaksson A, Rova A, Tegner Y, Eriksson A, Malm C (2020) Potential effects of long-term abuse of anabolic androgen steroids on human skeletal muscle. J Sports Med Phys Fitness 60:1040–1048

    Article  PubMed  CAS  Google Scholar 

  49. Kenyani J, Medina-Aunon JA, Martinez-Bartolomé S, Albar JP, Wastling JM, Jones AR (2011) A DIGE study on the effects of salbutamol on the rat muscle proteome – an exemplar of best practice for data sharing in proteomics. BMC Res Notes 4:86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Doran P, O’Connell K, Gannon J, Kavanagh M, Ohlendieck K (2008) Opposite pathobiochemical fate of pyruvate kinase and adenylate kinase in aged rat skeletal muscle as revealed by proteomic DIGE analysis. Proteomics 8:364–377

    Article  PubMed  CAS  Google Scholar 

  51. Capitanio D, Vasso M, Fania C, Moriggi M, Viganò A, Procacci P, Magnaghi V, Gelfi C (2009) Comparative proteomic profile of rat sciatic nerve and gastrocnemius muscle tissues in ageing by 2-D DIGE. Proteomics 9:2004–2020

    Article  PubMed  CAS  Google Scholar 

  52. Donoghue P, Staunton L, Mullen E, Manning G, Ohlendieck K (2010) DIGE analysis of rat skeletal muscle proteins using nonionic detergent phase extraction of young adult versus aged gastrocnemius tissue. J Proteome 73:1441–1453

    Article  CAS  Google Scholar 

  53. Staunton L, Zweyer M, Swandulla D, Ohlendieck K (2012) Mass spectrometry-based proteomic analysis of middle-aged vs. aged vastus lateralis reveals increased levels of carbonic anhydrase isoform 3 in senescent human skeletal muscle. Int J Mol Med 30:723–733

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  54. Capitanio D, Vasso M, De Palma S, Fania C, Torretta E, Cammarata FP, Magnaghi V, Procacci P, Gelfi C (2016) Specific protein changes contribute to the differential muscle mass loss during ageing. Proteomics 16:645–656

    Article  PubMed  CAS  Google Scholar 

  55. Anderson MJ, Lonergan SM, Huff-Lonergan E (2012) Myosin light chain 1 release from myofibrillar fraction during postmortem aging is a potential indicator of proteolysis and tenderness of beef. Meat Sci 90:345–351

    Article  PubMed  CAS  Google Scholar 

  56. Kim YH, Lonergan SM, Grubbs JK, Cruzen SM, Fritchen AN, della Malva A, Marino R, Huff-Lonergan E (2013) Effect of low voltage electrical stimulation on protein and quality changes in bovine muscles during postmortem aging. Meat Sci 94:289–296

    Article  PubMed  CAS  Google Scholar 

  57. Di Luca A, Elia G, Hamill R, Mullen AM (2013) 2D DIGE proteomic analysis of early post mortem muscle exudate highlights the importance of the stress response for improved water-holding capacity of fresh pork meat. Proteomics 13:1528–1544

    Article  PubMed  Google Scholar 

  58. Doran P, Martin G, Dowling P, Jockusch H, Ohlendieck K (2006) Proteome analysis of the dystrophin-deficient MDX diaphragm reveals a drastic increase in the heat shock protein cvHSP. Proteomics 6:4610–4621

    Article  PubMed  CAS  Google Scholar 

  59. Doran P, Wilton SD, Fletcher S, Ohlendieck K (2009) Proteomic profiling of antisense-induced exon skipping reveals reversal of pathobiochemical abnormalities in dystrophic mdx diaphragm. Proteomics 9:671–685

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  60. Gardan-Salmon D, Dixon JM, Lonergan SM, Selsby JT (2011) Proteomic assessment of the acute phase of dystrophin deficiency in mdx mice. Eur J Appl Physiol 111:2763–2773

    Article  PubMed  CAS  Google Scholar 

  61. Capitanio D, Moriggi M, Torretta E, Barbacini P, De Palma S, Vigano A, Lochmüller H, Muntoni F, Ferlini A, Mora M, Gelfi C (2020) Comparative proteomic analyses of Duchenne muscular dystrophy and Becker muscular dystrophy muscles: changes contributing to preserve muscle function in Becker muscular dystrophy patients. J Cachexia Sarcopenia Muscle 11:47–563

    Article  Google Scholar 

  62. Gomez AM, Vanheel A, Losen M, Molenaar PC, De Baets MH, Noben JP, Hellings N, Martinez-Martinez P (2013) Proteomic analysis of rat tibialis anterior muscles at different stages of experimental autoimmune myasthenia gravis. J Neuroimmunol 261:141–145

    Article  PubMed  CAS  Google Scholar 

  63. Hadrevi J, Ghafouri B, Larsson B, Gerdle B, Hellström F (2013) Multivariate modeling of proteins related to trapezius myalgia, a comparative study of female cleaners with or without pain. PLoS One 8:e73285

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Lakhdar R, Drost EM, MacNee W, Bastos R, Rabinovich RA (2017) 2D-DIGE proteomic analysis of vastus lateralis from COPD patients with low and normal fat free mass index and healthy controls. Respir Res 18:81

    Article  PubMed  PubMed Central  Google Scholar 

  65. Al-Khalili L, de Castro Barbosa T, Ostling J, Massart J, Cuesta PG, Osler ME, Katayama M, Nyström AC, Oscarsson J, Zierath JR (2014) Proteasome inhibition in skeletal muscle cells unmasks metabolic derangements in type 2 diabetes. Am J Physiol Cell Physiol 307:C774–C787

    Article  PubMed  CAS  Google Scholar 

  66. De Palma S, Capitanio D, Vasso M, Braghetta P, Scotton C, Bonaldo P, Lochmüller H, Muntoni F, Ferlini A, Gelfi C (2014) Muscle proteomics reveals novel insights into the pathophysiological mechanisms of collagen VI myopathies. J Proteome Res 13:5022–5030

    Article  PubMed  Google Scholar 

  67. Dowling P, Murphy S, Ohlendieck K (2016) Proteomic profiling of muscle fibre type shifting in neuromuscular diseases. Expert Rev Proteomics 13:783–799

    Article  PubMed  CAS  Google Scholar 

  68. Pette D, Staron RS (2000) Myosin isoforms, muscle fiber types, and transitions. Microsc Res Tech 50:500–509

    Article  PubMed  CAS  Google Scholar 

  69. Schiaffino S (2010) Fibre types in skeletal muscle: a personal account. Acta Physiol (Oxf) 199:451–463

    Article  CAS  Google Scholar 

  70. Schiaffino S (2018) Muscle fiber type diversity revealed by anti-myosin heavy chain antibodies. FEBS J 285:3688–3694

    Article  PubMed  CAS  Google Scholar 

  71. Murach KA, Dungan CM, Kosmac K, Voigt TB, Tourville TW, Miller MS, Bamman MM, Peterson CA, Toth MJ (2019) Fiber typing human skeletal muscle with fluorescent immunohistochemistry. J Appl Physiol 127:1632–1639

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Froemming GR, Murray BE, Harmon S, Pette D, Ohlendieck K (2000) Comparative analysis of the isoform expression pattern of Ca2+-regulatory membrane proteins in fast-twitch, slow-twitch, cardiac, neonatal and chronic low-frequency stimulated muscle fibers. Biochim Biophys Acta 1466:151–168

    Article  PubMed  CAS  Google Scholar 

  73. Staunton L, Ohlendieck K (2012) Mass spectrometric characterization of the sarcoplasmic reticulum from rabbit skeletal muscle by on-membrane digestion. Protein Pept Lett 19:252–263

    Article  PubMed  CAS  Google Scholar 

  74. Primeau JO, Armanious GP, Fisher ME, Young HS (2018) The SarcoEndoplasmic reticulum calcium ATPase. Subcell Biochem 87:229–258

    Article  PubMed  CAS  Google Scholar 

  75. Rossi D, Gamberucci A, Pierantozzi E, Amato C, Migliore L, Sorrentino V (2021) Calsequestrin, a key protein in striated muscle health and disease. J Muscle Res Cell Motil 42:267–279

    Article  PubMed  CAS  Google Scholar 

  76. Ohlendieck K (2011) Skeletal muscle proteomics: current approaches, technical challenges and emerging techniques. Skelet Muscle 1:6

    Article  PubMed  PubMed Central  Google Scholar 

  77. Ohlendieck K (2012) Proteomic profiling of skeletal muscle plasticity. Muscles Ligaments Tendons J 1:119–126

    PubMed  PubMed Central  Google Scholar 

  78. Holland A, Ohlendieck K (2013) Proteomic profiling of the contractile apparatus from skeletal muscle. Expert Rev Proteomics 10:239–257

    Article  PubMed  CAS  Google Scholar 

  79. Capitanio D, Moriggi M, Gelfi C (2017) Mapping the human skeletal muscle proteome: progress and potential. Expert Rev Proteomics 14:825–839

    Article  PubMed  CAS  Google Scholar 

  80. Yates JR, Ruse CI, Nakorchevsky A (2009) Proteomics by mass spectrometry: approaches, advances, and applications. Annu Rev Biomed Eng 11:49–79

    Article  PubMed  CAS  Google Scholar 

  81. Angel TE, Aryal UK, Hengel SM, Baker ES, Kelly RT, Robinson EW, Smith RD (2012) Mass spectrometry-based proteomics: existing capabilities and future directions. Chem Soc Rev 41:3912–3928

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Aebersold R, Mann M (2016) Mass-spectrometric exploration of proteome structure and function. Nature 537:347–355

    Article  PubMed  CAS  Google Scholar 

  83. Manes NP, Nita-Lazar A (2018) Application of targeted mass spectrometry in bottom-up proteomics for systems biology research. J Proteome 189:75–90

    Article  CAS  Google Scholar 

  84. Révész Á, Hevér H, Steckel A, Schlosser G, Szabó D, Vékey K, Drahos L (2021) Collision energies: optimization strategies for bottom-up proteomics. Mass Spectrom Rev 2:e21763

    Google Scholar 

  85. Zhang Z, Wu S, Stenoien DL, Paša-Tolić L (2014) High-throughput proteomics. Annu Rev Anal Chem (Palo Alto, Calif) 7:427–454

    Article  CAS  Google Scholar 

  86. Haag AM (2016) Mass analyzers and mass spectrometers. Adv Exp Med Biol 919:157–169

    Article  PubMed  CAS  Google Scholar 

  87. Cupp-Sutton KA, Wu S (2020) High-throughput quantitative top-down proteomics. Mol Omics 16:91–99

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

Research in the author’s laboratory has been supported by a project grant from the Kathleen Lonsdale Institute for Human Health Research, Maynooth University, and equipment funding under the Research Infrastructure Call 2012 by Science Foundation Ireland (SFI-12/RI/2346/3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kay Ohlendieck .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Ohlendieck, K. (2023). Comparative 3-Sample 2D-DIGE Analysis of Skeletal Muscles. In: Ohlendieck, K. (eds) Difference Gel Electrophoresis. Methods in Molecular Biology, vol 2596. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2831-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2831-7_11

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2830-0

  • Online ISBN: 978-1-0716-2831-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics