Skip to main content

Calcium Imaging and Amperometric Recording in Cultured Chromaffin Cells and Adrenal Slices from Normotensive, Wistar Kyoto Rats and Spontaneously Hypertensive Rats

  • Protocol
  • First Online:
Chromaffin Cells

Abstract

The spontaneously hypertensive rat (SHR) is a model widely used to investigate the causal mechanisms of essential hypertension. The enhanced catecholamine (CA) release reported in adrenal glands from adult SHRs raised considerable interest for its possible implication in the genesis of hypertension. The use of powerful techniques such as calcium imaging, electrophysiology, and single-cell amperometry to monitor in real time the key steps in CA secretion has allowed a better understanding of the role of chromaffin cells (CC) in the pathophysiology of hypertension, although several questions remain. Additionally, the implementation of these techniques in preparations in situ, such as the acute adrenal gland slice, which maintains the microenvironment, cell-to-cell communication, and anatomical structure similar to that of the intact adrenal gland, yields data that may have even greater physiological relevance. Here, we describe the procedures to measure the blood pressure of rats in a noninvasive manner, how to obtain primary cultures of adrenal chromaffin cells and acute adrenal slices, and how to perform amperometric recordings and intracellular calcium imaging in these preparations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Borkowski KR, Quinn P (1983) The effect of bilateral adrenal demedullation on vascular reactivity and blood pressure in spontaneously hypertensive rats. Br J Pharmacol 80:429–437. https://doi.org/10.1111/j.1476-5381.1983.tb10712.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Lee RM, Borkowski KR, Leenen FH, Tsoporis J, Coughlin M (1991) Combined effect of neonatal sympathectomy and adrenal demedullation on blood pressure and vascular changes in spontaneously hypertensive rats. Circ Res 69:714–721. https://doi.org/10.1161/01.res.69.3.714

    Article  CAS  PubMed  Google Scholar 

  3. Lee RM, Borkowski KR, Leenen FH, Tsoporis J, Coughlin M (1991a) Interaction between sympathetic nervous system and adrenal medulla in the control of cardiovascular changes in hypertension. J Cardiovasc Pharmacol 17(suppl.2):S114–S116. https://doi.org/10.1097/00005344-199117002-00025

    Article  PubMed  Google Scholar 

  4. Lim DY, Jang SJ, Park DG (2002) Comparison of catecholamine release in the isolated adrenal glands of SHR and WKY rats. Auton Autacoid Pharmacol 22:225–232. https://doi.org/10.1046/j.1474-8673.2002.00264.x

    Article  CAS  PubMed  Google Scholar 

  5. Segura-Chama P, Hernández A, Jiménez-Pérez N, Alejandre-García T, Rivera-Cerecedo CV, Hernández-Guijo JM, Hernández-Cruz A (2010) Comparison of Ca2+ currents of chromaffin cells from normotensive Wistar Kyoto and spontaneously hypertensive rats. Cell Mol Neurobiol 30:1243–1250. https://doi.org/10.1007/s10571-010-9566-0

    Article  CAS  PubMed  Google Scholar 

  6. Segura-Chama P, López-Bistrain P, Pérez-Armendáriz EM, Jiménez-Pérez N, Millán-Aldaco D, Hernández-Cruz A (2015) Enhanced Ca(2+)-induced Ca(2+) release from intracellular stores contributes to catecholamine hypersecretion in adrenal chromaffin cells from spontaneously hypertensive rats. Pflugers Arch 467(11):2307–2323. https://doi.org/10.1007/s00424-015-1702-8. Epub 2015 Mar 21

    Article  CAS  PubMed  Google Scholar 

  7. Peña Del Castillo JG, Segura-Chama P, Rincón-Heredia R, Millán-Aldaco D, Giménez-Molina Y, Villanueva J, Gutiérrez LM, Hernández-Cruz A (2021) Development of the hypersecretory phenotype in the population of adrenal chromaffin cells from prehypertensive SHRs. Pflugers Arch 473:1775–1793. https://doi.org/10.1007/s00424-021-02614-2

    Article  CAS  PubMed  Google Scholar 

  8. Miranda-Ferrerira R, de Pascual R, de Diego AM, Caricati-Neto A, Gandía L, Jurkiewicz A, García AG (2008) Single-vesicle catecholamine release has greater quantal content and faster kinetics in chromaffin cells from hypertensive, as compared with normotensive, rats. J Pharmacol Exp Ther 324:685–693. https://doi.org/10.1124/jpet.107.128819

    Article  CAS  Google Scholar 

  9. Miranda-Ferreira R, de Pascual R, Caricati-Neto A, Gandía L, Jurkiewicz A, García AG (2009) Role of the endoplasmic reticulum and mitochondria on quantal catecholamine release from chromaffin cells of control and hypertensive rats. J Pharmacol Exp Ther 329:231–240. https://doi.org/10.1124/jpet.108.147413

    Article  CAS  PubMed  Google Scholar 

  10. Borges R (1997) The rat adrenal gland in the study of the control of catecholamine secretion. Cell Dev Biol 8:113–120. https://doi.org/10.1006/scdb.1996.0130

    Article  CAS  Google Scholar 

  11. Albillos A, Neher E, Moser T (2000) R-type Ca2+ channels are coupled to the rapid component of secretion in mouse adrenal slice chromaffin cells. J Neurosci 20:8323–8330. https://doi.org/10.1523/JNEUROSCI.20-22-08323.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Aldea M, Jun K, Shin HS, Andres-Mateos E, Solis-Garrido LM, Montiel C, García AG, Albillos A (2002) A perforated patch-clamp study of calcium currents and exocytosis in chromaffin cells of wild-type and alpha1A knockout mice. J Neurochem 81:911–921. https://doi.org/10.1046/j.1471-4159.2002.00845.x

    Article  CAS  PubMed  Google Scholar 

  13. Barbara JG, Takeda K (1996) Quantal release at a neuronal nicotinic synapse from rat adrenal gland. Proc Natl Acad Sci U S A 93:9905–9909. https://doi.org/10.1073/pnas.93.18.9905

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Barbara JG, Poncer JC, McKinney RA, Takeda K (1998) An adrenal slice preparation for the study of chromaffin cells and their cholinergic innervation. J Neurosci Methods 80:181–189. https://doi.org/10.1016/s0165-0270(97)00200-813

    Article  CAS  PubMed  Google Scholar 

  15. Martin AO, Mathieu MN, Chevillard C, Guérineau NC (2001) Gap junctions mediate electrical signaling and ensuing cytosolic Ca2+ increases between chromaffin cells in adrenal slices: a role in catecholamine release. J Neurosci 21(15):5397–5405. https://doi.org/10.1523/JNEUROSCI.21-15-05397.2001

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Martin AO, Mathieu MN, Guérineau NC (2003) Evidence for long-lasting cholinergic control of gap junctional communication between adrenal chromaffin cells. J Neurosci 23(9):3669–3678. https://doi.org/10.1523/JNEUROSCI.23-09-03669.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Iijima T, Matsumoto G, Kidokoro Y (1992) Synaptic activation of rat adrenal medulla examined with a large photodiode array in combination with a voltage-sensitive dye. Neuroscience 51:211–219. https://doi.org/10.1016/0306-4522(92)90486-l

    Article  CAS  PubMed  Google Scholar 

  18. Voets T, Neher E (1999) Mechanisms underlying phasic and sustained secretion in chromaffin cells from mouse adrenal slices. Neuron 23:607–615. https://doi.org/10.1016/s0896-6273(00)80812-0

    Article  CAS  PubMed  Google Scholar 

  19. Hernández-Guijo JM, Gandía L, Lara B, García AG (1998) Autocrine/paracrine modulation of calcium channels in bovine chromaffin cells. Pflugers Arch 437(1):104–113. https://doi.org/10.1007/s004240050754

    Article  PubMed  Google Scholar 

  20. Hernández-Guijo JM, Carabelli V, Gandía L, García AG, Carbone E (1999) Voltage-independent autocrine modulation of L-type channels mediated by ATP, opioids and catecholamines in rat chromaffin cells. Eur J Neurosci 11(10):3574–3584. https://doi.org/10.1046/j.1460-9568.1999.00775.x

    Article  PubMed  Google Scholar 

  21. Hernández A, Segura-Chama P, Jiménez N, García AG, Hernández-Guijo JM, Hernández-Cruz A (2011) Modulation by endogenously released ATP and opioids of chromaffin cell calcium channels in mouse adrenal slices. Am J Phys 300(3):C610–C623. https://doi.org/10.1152/ajpcell.00380.2010

    Article  CAS  Google Scholar 

  22. Alejandre-García T, Segura-Chama P, Pérez-Armendáriz EM, Delgado-Lezama R, Hernández-Cruz A (2017) Modulation of spontaneous intracellular Ca2+ fluctuations and spontaneous cholinergic transmission in rat chromaffin cells in situ by endogenous GABA acting on GABAA receptors. Pflugers Arch - Eur J Physiol 469:1413. https://doi.org/10.1007/s00424-017-2041-8

    Article  CAS  Google Scholar 

  23. Pinto YM, Paul M, Ganten D (1998) Lessons from rat models of hypertension: from Goldblatt to genetic engineering. Cardiovasc Res 39:77–88. https://doi.org/10.1016/S0008-6363(98)00077-7

    Article  CAS  PubMed  Google Scholar 

  24. Pinilla L, Rodriguez-Padilla ML, Sanchez-Criado J, Gaytan F, Aguilar E (1999) Mechanism of reproductive deficiency in spontaneously hypertensive rats. Physiol Behav 51(1):99–104. https://doi.org/10.1016/0031-9384(92)90209-k

    Article  Google Scholar 

  25. Cierpial MA, Shasby DE, Mc Carty R (1987) Patterns of maternal behavior in the spontaneously hypertensive rat. Physiol Behav 39(5):633–637. https://doi.org/10.1016/0031-9384(87)90165-x

    Article  CAS  PubMed  Google Scholar 

  26. Myers MM, Brunelli SA, Squire JM, Shindeldecker RD, Hofer MA (1989) Maternal behavior of SHR rats and its relationship to offspring blood pressures. Dev Psychobiol 22(1):29–53. https://doi.org/10.1002/dev.420220104

    Article  CAS  PubMed  Google Scholar 

  27. Rose JL, Mc Carty R (1994) Maternal influence of milk intake in SHR and WKY pups. Physiol Behav 56(5):901–906. https://doi.org/10.1016/0031-9384(94)90321-2

    Article  CAS  PubMed  Google Scholar 

  28. Rivera C, Hernandez R, Marin H (2013) Reproductive management of colonies to spontaneously hypertensive rat (SHR) and normotensive Wistar Kyoto (WKY) in the Institute of Cellular Physiology, National Autonomous University of Mexico. Rev Electrón Vet 14(11B) http://www.veterinaria.org/revistas/redvet/n11113B.html

  29. Daugherty A, Rateri D, Hong L, Balakrishnan A (2009) Measuring blood pressure in mice using volume pressure recording, a tail-cuff method. J Vis Exp 27:1291. https://doi.org/10.3791/1291

    Article  Google Scholar 

  30. Machado DJ, Montesinos MS, Borges R (2008) Good practices in single-cell amperometry. Methods Mol Biol 440:297–313. https://doi.org/10.1007/978-1-59745-178-9_23

    Article  CAS  PubMed  Google Scholar 

  31. Kawagoe KT, Zimmerman JB, Wightman RM (1993) Principles of voltammetry and microelectrode surface states. J Neurosci Methods 48(3):225–240. https://doi.org/10.1016/0165-0270(93)90094-8

    Article  CAS  PubMed  Google Scholar 

  32. Mosharov EV, Sulzer D (2005) Analysis of exocytotic events recorded by amperometry. Nat Methods 2:651–658. https://doi.org/10.1038/nmeth782

    Article  CAS  PubMed  Google Scholar 

  33. Segura F, Brioso M, Gómez JF, Machado JD, Borges R (2000) Automatic analysis for amperometrical recordings of exocytosis. J Neurosci Methods 103(2):151–156. https://doi.org/10.1016/s0165-0270(00)00309-5

    Article  CAS  PubMed  Google Scholar 

  34. Patel TP, Man K, Firestein B, Meaney DF (2015) Automated quantification of neuronal networks and single-cell calcium dynamics using calcium imaging. J Neurosci Methods 243:26–38. https://doi.org/10.1016/j.jneumeth.2015.01.020

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arturo Hernández-Cruz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Alejandre-García, T., Segura-Chama, P., Parada-Parra, O.J., Millán-Aldaco, D., Hernández-Cruz, A. (2023). Calcium Imaging and Amperometric Recording in Cultured Chromaffin Cells and Adrenal Slices from Normotensive, Wistar Kyoto Rats and Spontaneously Hypertensive Rats. In: Borges, R. (eds) Chromaffin Cells. Methods in Molecular Biology, vol 2565. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2671-9_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2671-9_10

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2670-2

  • Online ISBN: 978-1-0716-2671-9

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics