Skip to main content
Log in

Development of the hypersecretory phenotype in the population of adrenal chromaffin cells from prehypertensive SHRs

  • Molecular and cellular mechanisms of disease
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

The hypersecretory phenotype of adrenal chromaffin cells (CCs) from early spontaneously hypertensive rats (SHRs) mainly results from enhanced Ca2+-induced Ca2+-release (CICR). A key question is if these abnormalities can be traced to the prehypertensive stage. Spontaneous and stimulus-induced catecholamine exocytosis, intracellular Ca2+ signals, and dense-core granule size and density were examined in CCs from prehypertensive and hypertensive SHRs and compared with age-matched Wistar-Kyoto rats (WKY). During the prehypertensive stage, the depolarization-elicited catecholamine exocytosis was ~ 2.9-fold greater in SHR than in WKY CCs. Interestingly, in half of CCs the exocytosis was indistinguishable from WKY CCs, while it was between 3- and sixfold larger in the other half. Likewise, caffeine-induced exocytosis was ~ twofold larger in prehypertensive SHR. Accordingly, depolarization and caffeine application elicited [Ca2+]i rises ~ 1.5-fold larger in prehypertensive SHR than in WKY CCs. Ryanodine reduced the depolarization-induced secretion in prehypertensive SHR by 57%, compared to 14% in WKY CCs, suggesting a greater contribution of intracellular Ca2+ release to exocytosis. In SHR CCs, the mean spike amplitude and charge per spike were significantly larger than in WKY CCs, regardless of age and stimulus type. This difference in granule content could explain in part the enhanced exocytosis in SHR CCs. However, electron microscopy did not reveal significant differences in granule size between SHRs and WKY rats’ adrenal medulla. Nonetheless, preSHR and hypSHR display 63% and 82% more granules than WKY, which could explain in part the enhanced catecholamine secretion. The mechanism responsible for the heterogeneous population of prehypertensive SHR CCs and the bias towards secreting more medium and large granules remains unexplained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Albillos A, Dernick G, Horstmann H, Almers W, de Toledo GA, Lindau M (1997) The exocytotic event in chromaffin cells revealed by patch amperometry. Nature 389(6650):509–512. https://doi.org/10.1038/39081

    Article  CAS  PubMed  Google Scholar 

  2. Alonso MT, Barrero MJ, Michelena P, Carnicero E, Cuchillo I, García AG, García-Sancho J, Montero M, Alvarez J (1999) Ca2+-induced Ca2+ release in chromaffin cells seen from inside the ER with targeted aequorin. J Cell Biol 144(2):241–254. https://doi.org/10.1083/jcb.144.2.241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Anderson EA, Sinkey CA, Lawton WJ, Mark AL (1989) Elevated sympathetic nerve activity in borderline hypertensive humans. Evidence from direct intraneural recordings. Hypertension 14(2):177–183. https://doi.org/10.1161/01.HYP.14.2.177

    Article  CAS  PubMed  Google Scholar 

  4. Aoki K, Takikawa K, Hotta K (1973) Role of adrenal cortex and medulla in hypertension. Nat New Biol 241(108):122–123. https://doi.org/10.1038/newbio241122a0

    Article  CAS  PubMed  Google Scholar 

  5. Bhalla A, Chicka MC, Chapman ER (2008) Analysis of the synaptotagmin family during reconstituted membrane fusion. J Biol Chem 283(31):21799–21807. https://doi.org/10.1074/jbc.M709628200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Borkowski KR, Quinn P (1983) The effect of bilateral adrenal demedullation on vascular reactivity and blood pressure in spontaneously hypertensive rats. Br J Pharmacol 80(3):429–437. https://doi.org/10.1111/j.1476-5381.1983.tb10712.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Carbone E, Borges R, Eiden LE, García AG, Hernández-Cruz A (2019) Chromaffin cells of the adrenal medulla: physiology, pharmacology, and disease. Compr Physiol 9(4):1443–1502. https://doi.org/10.1002/cphy.c190003

    Article  PubMed  Google Scholar 

  8. de Champlain J, Farley L, Cousineau D, van Ameringen MR (1976) Circulating catecholamine levels in human and experimental hypertension. Circ Res 38(2):109–114. https://doi.org/10.1161/01.RES.38.2.109

    Article  PubMed  Google Scholar 

  9. Chapman ER (2008) How does synaptotagmin trigger neurotransmitter release? Ann Rev Biochem 77(1):615–641. https://doi.org/10.1146/annurev.biochem.77.062005.101135

    Article  CAS  PubMed  Google Scholar 

  10. Conrad CH, Brooks WW, Hayes JA, Sen S, Robinson KG, Bing OHL (1995) Myocardial fibrosis and stiffness with hypertrophy and heart failure in the spontaneously hypertensive rat. Circulation. 91(1):161–170. https://doi.org/10.1161/01.CIR.91.1.161

    Article  CAS  PubMed  Google Scholar 

  11. Currie G, Freel EM, Perry CG, Dominiczak AF (2012) Disorders of blood pressure regulation—role of catecholamine biosynthesis, release, and metabolism. Curr Hypertens Rep 14(1):38–45. https://doi.org/10.1007/s11906-011-0239-2

    Article  CAS  PubMed  Google Scholar 

  12. Esler M (2000) The sympathetic system and hypertension. Am J Hypertens 13(6):S99–S105. https://doi.org/10.1016/S0895-7061(00)00225-9

    Article  Google Scholar 

  13. Esler M, Rumantir M, Kaye D, Jennings G, Hastings J, Socratous F, Lambert G (2001) Sympathetic nerve biology In Essential hypertension. Clin Exp Pharmacol Physiol 28(12):986–989. https://doi.org/10.1046/j.1440-1681.2001.03566.x

    Article  CAS  PubMed  Google Scholar 

  14. Finnegan JM, Pihel K, Cahill PS, Huang L, Zerby SE, Ewing AG, Kennedy RT, Wightman RM (1996) Vesicular quantal size measured by amperometry at chromaffin, mast, pheochromocytoma, and pancreatic beta-cells. J Neurochem 66(5):1914–1923. https://doi.org/10.1046/j.1471-4159.1996.66051914.x

    Article  CAS  PubMed  Google Scholar 

  15. Flaa A, Mundal HH, Eide I, Kjeldsen S, Rostrup M (2006) Sympathetic activity and cardiovascular risk factors in young men in the low, normal, and high blood pressure ranges. Hypertension. 47(3):396–402. https://doi.org/10.1161/01.HYP.0000203952.27988.79

    Article  CAS  PubMed  Google Scholar 

  16. Fukuda M, Kanno E, Satoh M, Saegusa C, Yamamoto A (2004) Synaptotagmin VII is targeted to dense-core vesicles and regulates their Ca2+-dependent exocytosis in PC12 cells. J Biol Chem 279(50):52677–52684. https://doi.org/10.1074/jbc.M409241200

    Article  CAS  PubMed  Google Scholar 

  17. Fukuda M, Kowalchyk JA, Zhang X, Martin TFJ, Mikoshiba K (2002) Synaptotagmin IX Regulates Ca2+-dependent Secretion in PC12 Cells. J Biol Chem 277(7):4601–4604. https://doi.org/10.1074/jbc.C100588200

    Article  CAS  PubMed  Google Scholar 

  18. Hernández-Cruz A, Díaz-Muñoz M, Gómez-Chavarín M, Cañedo-Merino R, Protti DA, Escobar AL, Sierralta J, Suárez-Isla BA (1995) Properties of the ryanodine-sensitive release channels that underlie caffeine-induced Ca2+ mobilization from intracellular stores in mammalian sympathetic neurons. Eur J Neurosci 7(8):1684–1699. https://doi.org/10.1111/j.1460-9568.1995.tb00690.x

    Article  PubMed  Google Scholar 

  19. Hernández-Cruz A, Escobar AL, Jiménez N (1997) Ca2+-induced Ca2+ release phenomena in mammalian sympathetic neurons are critically dependent on the Rate of rise of trigger Ca2+. J Gen Physiol 109(2):147–167. https://doi.org/10.1085/jgp.109.2.147

    Article  PubMed  PubMed Central  Google Scholar 

  20. Jablonskis LT, Howe PRC (1994) Elevated plasma adrenaline in spontaneously hypertensive rats. Blood Pressure 3(1–2):106–111. https://doi.org/10.3109/08037059409101529

    Article  CAS  PubMed  Google Scholar 

  21. Judy WV, Farrell SK (1979) Arterial baroreceptor reflex control of sympathetic nerve activity in the spontaneously hypertensive rat. Hypertension. 1(6):605–614

    Article  CAS  PubMed  Google Scholar 

  22. Kiprov D (1980) Experimental models of hypertension. Cor Et Vasa. 22(1–2):116–128

    CAS  PubMed  Google Scholar 

  23. Kuba K (1994) Ca2+-induced Ca2+ Release in Neurones. Jpn J Physiol 44(6):613–650. https://doi.org/10.2170/jjphysiol.44.613

    Article  CAS  PubMed  Google Scholar 

  24. Lee RM, Borkowski KR, Leenen FH, Tsoporis J, Coughlin M (1991) Combined effect of neonatal sympathectomy and adrenal demedullation on blood pressure and vascular changes in spontaneously hypertensive rats. Circ Res 69(3):714–721. https://doi.org/10.1161/01.RES.69.3.714

    Article  CAS  PubMed  Google Scholar 

  25. Lee RM, Triggle CR, Cheung DW, Coughlin MD (1987) Structural and functional consequence of neonatal sympathectomy on the blood vessels of spontaneously hypertensive rats. Hypertension (Dallas, Tex.: 1979) 10(3):328–338. https://doi.org/10.1161/01.hyp.10.3.328

    Article  CAS  Google Scholar 

  26. Li D, Lee C, Buckler K, Parekh A, Herring N, Paterson DJ (2012) Abnormal intracellular calcium homeostasis in sympathetic neurons from young prehypertensive rats. Hypertension 59(3):642–649. https://doi.org/10.1161/HYPERTENSIONAHA.111.186460

    Article  CAS  PubMed  Google Scholar 

  27. Lundin SA, Hallback-Nordlander M (1980) Background of hyperkinetic circulatory state in young spontaneously hypertensive rats. Cardiovasc Res 14(10):561–567. https://doi.org/10.1093/cvr/14.10.561

    Article  CAS  PubMed  Google Scholar 

  28. Malgaroli A, Fesce R, Meldolesi J (1990) Spontaneous [Ca2+]i fluctuations in rat chromaffin cells do not require inositol 1,4,5-trisphosphate elevations but are generated by a caffeine- and ryanodine-sensitive intracellular Ca2+ store. J Biol Chem 265(6):3005–3008

    Article  CAS  PubMed  Google Scholar 

  29. Miranda-Ferreira R, de Pascual R, Caricati-Neto A, Gandía L, Jurkiewicz A, García AG (2009) Role of the endoplasmic reticulum and mitochondria on quantal catecholamine release from chromaffin cells of control and hypertensive rats. J Pharmacol Exp Ther 329(1):231–240. https://doi.org/10.1124/jpet.108.147413

    Article  CAS  PubMed  Google Scholar 

  30. Miranda-Ferreira R, de Pascual R, de Diego AMG, Caricati-Neto A, Gandía L, Jurkiewicz A, García AG (2008) Single-vesicle catecholamine release has greater quantal content and faster kinetics in chromaffin cells from hypertensive, as compared with normotensive, rats. J Pharmacol Exp Ther 324(2):685–693. https://doi.org/10.1124/jpet.107.128819

    Article  CAS  PubMed  Google Scholar 

  31. Morrison SF, Whitehorn D (1984) Enhanced preganglionic sympathetic nerve responses in spontaneously hypertensive rats. Brain Res 296(1):152–155. https://doi.org/10.1016/0006-8993(84)90522-5

    Article  CAS  PubMed  Google Scholar 

  32. Mosharov EV, Sulzer D (2005) Analysis of exocytotic events recorded by amperometry. Nat Methods. 2(9):651–658. https://doi.org/10.1038/nmeth782

    Article  CAS  PubMed  Google Scholar 

  33. Musial DC, Bomfim GH, Arranz-Tagarro JA, Méndez-López I, Miranda-Ferreira R, Jurkiewicz A, Jurkiewicz NH, García AG, Padín JF (2017) Altered mitochondrial function, calcium signaling, and catecholamine release in chromaffin cells of diabetic and SHR rats. Eur J Pharmacol 815:416–426. https://doi.org/10.1016/j.ejphar.2017.09.045

    Article  CAS  PubMed  Google Scholar 

  34. Okamoto K, Aoki K (1963) Development of a Strain of Spontaneously Hypertensive Rats. Jpn Circ J 27(3):282–293. https://doi.org/10.1253/jcj.27.282

    Article  CAS  PubMed  Google Scholar 

  35. Padín JF, de Diego AMG, Fernández-Morales JC, Merino C, Maroto M, Calvo-Gallardo E, Arranz JA, Yáñez M, García AG (2012) Resveratrol augments nitric oxide generation and causes store calcium release in chromaffin cells. Eur J Pharmacol 685(1–3):99–107. https://doi.org/10.1016/j.ejphar.2012.03.040

    Article  CAS  PubMed  Google Scholar 

  36. Pak CH (1981) Plasma adrenaline and noradrenaline concentrations of the spontaneously hypertensive rat. Jpn Heart J 22(6):987–995. https://doi.org/10.1536/ihj.22.987

    Article  CAS  PubMed  Google Scholar 

  37. Pinto Y (1998) Lessons from rat models of hypertension from Goldblatt to genetic engineering. Cardiovasc Res 39(1):77–88. https://doi.org/10.1016/S0008-6363(98)00077-7

    Article  CAS  PubMed  Google Scholar 

  38. Sakaguchi A, LeDoux JE, Reis DJ (1983) Sympathetic nerves and adrenal medulla: contributions to cardiovascular-conditioned emotional responses in spontaneously hypertensive rats. Hypertension. 5(5):728–738. https://doi.org/10.1161/01.HYP.5.5.728

    Article  CAS  PubMed  Google Scholar 

  39. Segura-Chama P, López-Bistrain P, Pérez-Armendáriz EM, Jiménez-Pérez N, Millán-Aldaco D, Hernández-Cruz A (2015) Enhanced Ca2+-induced Ca2+ release from intracellular stores contributes to catecholamine hypersecretion in adrenal chromaffin cells from spontaneously hypertensive rats. Pflügers Archiv - Eur J Physiol 467(11):2307–2323. https://doi.org/10.1007/s00424-015-1702-8

    Article  CAS  Google Scholar 

  40. Shamanaev AY, Aliev OI, Anishchenko AM, Sidekhmenova AV, Plotnikov MB (2016) Specificity of the Hemodynamic Indices’ Shift in SHR Line Rats at Different Age. Ontogenez 47(5):320–323

    PubMed  Google Scholar 

  41. Shanks J, Manou-Stathopoulou S, Lu C-J, Li D, Paterson DJ, Herring N (2013) Cardiac sympathetic dysfunction in the prehypertensive spontaneously hypertensive rat. Am J Physiol-Heart Circ Physiol 305(7):H980–H986. https://doi.org/10.1152/ajpheart.00255.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Sietzen M, Schober M, Fischer-Colbrie R, Scherman D, Sperk G, Winkler H (1987) Rat adrenal medulla: Levels of chromogranins, enkephalins, dopamine β-hydroxylase and of the amine transporter are changed by nervous activity and hypophysectomy. Neuroscience 22(1):131–139. https://doi.org/10.1016/0306-4522(87)90203-X

    Article  CAS  PubMed  Google Scholar 

  43. Sutko JI, Airey JA, Welch W, Ruest L (1997) The pharmacology of ryanodine and related compounds. Am Soc Pharmacol Exp Ther 49:1

    Google Scholar 

  44. Tischler AS, Ruzicka LA, DeLellis RA (1991) Regulation of neurotensin content in adrenal medullary cells: comparison of PC12 cells to normal rat chromaffin cells in vitro. Neuroscience 43(2–3):671–678. https://doi.org/10.1016/0306-4522(91)90325-I

    Article  CAS  PubMed  Google Scholar 

  45. Tischler AS, Ziar J, Downing JC, Mcclain RM (1995) Sustained stimulation of rat adrenal chromaffin cell proliferation by reserpine. Toxicol Appl Pharmacol 135(2):254–257. https://doi.org/10.1006/taap.1995.1231

    Article  CAS  PubMed  Google Scholar 

  46. Vavřínová A, Behuliak M, Bencze M, Vaněčková I, Zicha J (2019) Which sympathoadrenal abnormalities of adult spontaneously hypertensive rats can be traced to a prehypertensive stage? Hypertens Res 42(7):949–959. https://doi.org/10.1038/s41440-018-0198-y

    Article  PubMed  Google Scholar 

  47. Vavřínová A, Behuliak M, Bencze M, Vodička M, Ergang P, Vaněčková I, Zicha J (2019) Sympathectomy-induced blood pressure reduction in adult normotensive and hypertensive rats is counteracted by enhanced cardiovascular sensitivity to vasoconstrictors. Hypertens Res 42(12):1872–1882. https://doi.org/10.1038/s41440-019-0319-2

    Article  PubMed  Google Scholar 

  48. Vites AM, Pappano J (1994) Distinct modes of inhibition by ruthenium red and ryanodine of calcium-induced calcium release in avian atrium. J Pharmacol Exp Ther 268(3):1476–1484

    CAS  PubMed  Google Scholar 

  49. Wightman RM, Jankowski JA, Kennedy RT, Kawagoe KT, Schroeder TJ, Leszczyszyn DJ, Near JA, Diliberto EJ, Viveros OH (1991) Temporally resolved catecholamine spikes correspond to single vesicle release from individual chromaffin cells. Proc Natl Acad Sci 88:10754–10758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Zhang Z, Wu Y, Wang Z, Dunning FM, Rehfuss J, Ramanan D, Chapman ER, Jackson MB (2011) Release mode of large and small dense-core vesicles specified by different synaptotagmin isoforms in PC12 cells. Mol Biol Cell 22(13):2324–2336. https://doi.org/10.1091/mbc.e11-02-0159

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Drs. Citlali Trueta and Fredy Cifuentes for discussions and advice, MVZ Claudia V. Rivera-Cerecedo for expert animal breeding, and Francisco Perez for expert computing assistance. Peña del Castillo J. G. is a Ph. D. student from the Programa de Doctorado en Ciencias Biomédicas, Universidad Nacional Autónoma de México (UNAM) and received the fellowship #306030 from CONACyT. This study was conducted as part of the requirements to obtain her Ph. D. Supported by Grants 315803 and 314839 to A-HC from Consejo Nacional de Ciencia y Tecnología (CONACYT), México and PAPIIT AG200119 from Dirección General de Asuntos del Personal Académico (DGAPA-UNAM). Also supported by a grant from Ministerio de Ciencia e Innovación (Project PID2020-114824GB-I00 to LMG).

Funding

This study is financially supported by Grants 315803 (Laboratorio Nacional de Canalopatías) from Consejo Nacional de Ciencia y Tecnología (CONACYT), México, and PAPIIT AG200119 from Dirección General de Asuntos del Personal Académico (DGAPA-UNAM) and by a grant of Ministerio de Ciencia e Innovación (Project PID2020-114824GB-I00 to LMG).

Author information

Authors and Affiliations

Authors

Contributions

Peña-del Castillo performed the experiments, analyzed data, prepared figures, and wrote the paper, Segura Chama performed research and analyzed data, Rincón-Heredia analyzed data, Diana Millán-Aldaco performed research, contributed new methods, Yolanda Giménez-Molina, José Villanueva, and Luis Miguel Gutiérrez, contributed new method and analyzed data. Arturo Hernández-Cruz conceived the study, wrote the paper.

Corresponding author

Correspondence to Arturo Hernández-Cruz.

Ethics declarations

Ethics approval

Research involving animals complies with the Mexican Guide’s guidelines for the Care and Use of Laboratory Animals of the Secretary of Agriculture (SAGARPA NOM-062-Z00–1999). The Institutional Committee of Care and Use of Laboratory Animals (CICUAL-IFC) approved the experimental protocols used here (protocol AHC24-141). Research does not involve human patients.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peña del Castillo, J.G., Segura-Chama, P., Rincón-Heredia, R. et al. Development of the hypersecretory phenotype in the population of adrenal chromaffin cells from prehypertensive SHRs. Pflugers Arch - Eur J Physiol 473, 1775–1793 (2021). https://doi.org/10.1007/s00424-021-02614-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02614-2

Keywords

Navigation