Skip to main content

Optical Coherence Tomography Angiography (OCTA) Findings in Retinitis Pigmentosa

  • Protocol
  • First Online:
Retinitis Pigmentosa

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2560))

  • 1140 Accesses

Abstract

Optical coherence tomography angiography (OCTA) is a noninvasive new imaging modality that can be used to diagnose and monitor progression of retinitis pigmentosa (RP). Cohorts and case series have shown correlation between OCTA findings and visual function and disease severity. Although an early use of the technology is promising, there are concerns about segmentation errors and artifacts. There is also a paucity of data on genotype and how that correlates with OCTA findings. Despite its limitations, OCTA remains a useful tool for clinicians managing retinitis pigmentosa patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kim DY et al (2013) Optical imaging of the chorioretinal vasculature in the living human eye. Proc Natl Acad Sci U S A 110(35):14354–14359

    Article  CAS  Google Scholar 

  2. Ferrara D, Waheed NK, Duker JS (2016) Investigating the choriocapillaris and choroidal vasculature with new optical coherence tomography technologies. Prog Retin Eye Res 52:130–155

    Article  Google Scholar 

  3. Kashani AH et al (2017) Optical coherence tomography angiography: a comprehensive review of current methods and clinical applications. Prog Retin Eye Res 60:66–100

    Article  Google Scholar 

  4. Jia Y et al (2015) Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye. Proc Natl Acad Sci U S A 112(18):E2395–E2402

    Article  CAS  Google Scholar 

  5. Spaide RF et al (2018) Optical coherence tomography angiography. Prog Retin Eye Res 64:1–55

    Article  Google Scholar 

  6. Huang D et al (2016) Optical coherence tomography angiography using the optovue device. Dev Ophthalmol 56:6–12

    Article  Google Scholar 

  7. Liu G et al (2017) Extended axial imaging range, widefield swept source optical coherence tomography angiography. J Biophotonics 10(11):1464–1472

    Article  Google Scholar 

  8. Murakami Y et al (2015) Correlation between macular blood flow and central visual sensitivity in retinitis pigmentosa. Acta Ophthalmol 93(8):e644–e648

    Article  Google Scholar 

  9. Alnawaiseh M et al (2019) Optical coherence tomography angiography in patients with retinitis pigmentosa. Retina 39(1):210–217

    Article  Google Scholar 

  10. Inooka D et al (2018) Quantification of macular microvascular changes in patients with retinitis pigmentosa using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 59(1):433–438

    Article  CAS  Google Scholar 

  11. Koyanagi Y et al (2018) Optical coherence tomography angiography of the macular microvasculature changes in retinitis pigmentosa. Acta Ophthalmol 96(1):e59–e67

    Article  Google Scholar 

  12. Rezaei KA et al (2017) Retinal and choroidal vascular features in patients with retinitis pigmentosa imaged by OCT based microangiography. Graefes Arch Clin Exp Ophthalmol 255(7):1287–1295

    Article  Google Scholar 

  13. Sugahara M et al (2017) Optical coherence tomography angiography to estimate retinal blood flow in eyes with retinitis pigmentosa. Sci Rep 7:46396

    Article  CAS  Google Scholar 

  14. Toto L et al (2016) Macular features in retinitis pigmentosa: correlations among ganglion cell complex thickness, capillary density, and macular function. Invest Ophthalmol Vis Sci 57(14):6360–6366

    Article  Google Scholar 

  15. Battaglia Parodi M et al (2017) Vessel density analysis in patients with retinitis pigmentosa by means of optical coherence tomography angiography. Br J Ophthalmol 101(4):428–432

    Article  Google Scholar 

  16. Mastropasqua R et al (2020) Widefield swept source OCTA in retinitis pigmentosa. Diagnostics (Basel) 10(1):50

    Article  Google Scholar 

  17. Lin R et al (2019) Relationship between cone loss and microvasculature change in retinitis pigmentosa. Invest Ophthalmol Vis Sci 60(14):4520–4531

    Article  CAS  Google Scholar 

  18. Hagag AM et al (2019) Projection-resolved optical coherence tomographic angiography of retinal plexuses in retinitis pigmentosa. Am J Ophthalmol 204:70–79

    Article  Google Scholar 

  19. Guduru A et al (2018) Quantitative assessment of the choriocapillaris in patients with retinitis pigmentosa and in healthy individuals using OCT angiography. Ophthalmic Surg Lasers Imaging Retina 49(10):e122–e128

    Article  Google Scholar 

  20. Miyata M et al (2019) Concentric choriocapillaris flow deficits in retinitis pigmentosa detected using wide-angle swept-source optical coherence tomography angiography. Invest Ophthalmol Vis Sci 60(4):1044–1049

    Article  Google Scholar 

  21. Liu R et al (2019) Effect of choroidal vessel density on the ellipsoid zone and visual function in retinitis pigmentosa using optical coherence tomography angiography. Invest Ophthalmol Vis Sci 60(13):4328–4335

    Article  Google Scholar 

  22. Arrigo A et al (2019) Vascular patterns in retinitis pigmentosa on swept-source optical coherence tomography angiography. J Clin Med 8(9):1425

    Article  CAS  Google Scholar 

  23. Sayadi J et al (2017) Type 3 neovascularization associated with retinitis pigmentosa. Case Rep Ophthalmol 8(1):245–249

    Article  Google Scholar 

  24. Attanasio M et al (2020) Swept-source optical coherence tomography angiography findings in a case of Pachychoroid Neovasculopathy in retinitis pigmentosa. Retin Cases Brief Rep 16(3):300–304

    Article  Google Scholar 

  25. Aloe G et al (2019) Bilateral retinal angiomatous proliferation in a variant of retinitis pigmentosa. Case Rep Ophthalmol Med 2019:8547962

    CAS  Google Scholar 

  26. Marano F et al (2000) Hereditary retinal dystrophies and choroidal neovascularization. Graefes Arch Clin Exp Ophthalmol 238(9):760–764

    Article  CAS  Google Scholar 

  27. Cheng JY, Adrian KH (2009) Photodynamic therapy for choroidal neovascularization in stargardt disease and retinitis pigmentosa. Retin Cases Brief Rep 3(4):388–390

    Article  Google Scholar 

  28. Hajali M, Fishman GA, Anderson RJ (2008) The prevalence of cystoid macular oedema in retinitis pigmentosa patients determined by optical coherence tomography. Br J Ophthalmol 92(8):1065–1068

    Article  CAS  Google Scholar 

  29. de Carlo TE et al (2016) Analysis of choroidal and retinal vasculature in inherited retinal degenerations using optical coherence tomography angiography. Ophthalmic Surg Lasers Imaging Retina 47(2):120–127

    Article  Google Scholar 

  30. Yeo JH, Kim YJ, Yoon YH (2020) Optical coherence tomography angiography in patients with retinitis pigmentosa-associated cystoid macular edema. Retina 40(12):2385–2395

    Article  CAS  Google Scholar 

  31. Takagi S et al (2018) Optical coherence tomography angiography in patients with retinitis pigmentosa who have normal visual acuity. Acta Ophthalmol 96(5):e636–e642

    Article  Google Scholar 

  32. Jauregui R et al (2018) Quantitative comparison of near-infrared versus short-wave autofluorescence imaging in monitoring progression of retinitis pigmentosa. Am J Ophthalmol 194:120–125

    Article  Google Scholar 

  33. Tang PH et al (2019) Optical coherence tomography angiography of RPGR-associated retinitis pigmentosa suggests foveal avascular zone is a biomarker for vision loss. Ophthalmic Surg Lasers Imaging Retina 50(2):e44–e48

    Article  Google Scholar 

  34. Wang XN et al (2019) Quantitative evaluation of primary retinitis pigmentosa patients using colour Doppler flow imaging and optical coherence tomography angiography. Acta Ophthalmol 97(7):e993–e997

    Article  Google Scholar 

  35. Lauermann JL et al (2018) Prevalences of segmentation errors and motion artifacts in OCT-angiography differ among retinal diseases. Graefes Arch Clin Exp Ophthalmol 256(10):1807–1816

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Diaconita, V., Kassotis, A., Ngo, W.K. (2023). Optical Coherence Tomography Angiography (OCTA) Findings in Retinitis Pigmentosa. In: Tsang, S.H., Quinn, P.M. (eds) Retinitis Pigmentosa. Methods in Molecular Biology, vol 2560. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2651-1_9

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2651-1_9

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2650-4

  • Online ISBN: 978-1-0716-2651-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics