Skip to main content

Differentiation of Peripheral Treg

  • Protocol
  • First Online:
Regulatory T-Cells

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2559))

Abstract

This chapter shows protocols for the differentiation of peripheral Treg (pTreg) from polyclonal and monoclonal CD4+ T cells. Polyclonal naïve CD4+ T cells can differentiate into pTreg upon adoptive transfer into Foxp3-diphtheria toxin receptor transgenic recipient mice in which endogenous Tregs are transiently depleted by administration of diphtheria toxin before adoptive transfer. Differentiation of monoclonal pTreg is induced through oral delivery of ovalbumin into RAG-deficient DO11.10 mice, in which T cells are ovalbumin specific. We show the isolation of naïve CD4+ T cells by flow cytometry, the administration of ovalbumin in drinking water, and the analysis tools, including an optional protocol for the enrichment of analysis samples in CD4+ T cells using a magnetic purification.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Sakaguchi S, Yamaguchi T, Nomura T, Ono M (2008) Regulatory T cells and immune tolerance. Cell 133(5):775–787

    Article  CAS  Google Scholar 

  2. Abbas AK, Benoist C, Bluestone JA, Campbell DJ, Ghosh S, Hori S et al (2013) Regulatory T cells: recommendations to simplify the nomenclature. Nat Immunol 14(4):307–308

    Article  CAS  Google Scholar 

  3. Savage PA, Klawon DEJ, Miller CH (2020) Regulatory T cell development. Annu Rev Immunol 38:421–453

    Article  CAS  Google Scholar 

  4. Apostolou I, Von Boehmer H (2004) In vivo instruction of suppressor commitment in naive T cells. J Exp Med 199(10):1401–1408

    Article  CAS  Google Scholar 

  5. Cobbold SP, Castejon R, Adams E, Zelenika D, Graca L, Humm S et al (2004) Induction of foxP3 + regulatory T cells in the periphery of T cell receptor transgenic mice Tolerized to transplants. J Immunol 172(10):6003–6010

    Article  CAS  Google Scholar 

  6. Mucida D, Kutchukhidze N, Erazo A, Russo M, Lafaille JJ, Curotto De Lafaille MA (2005) Oral tolerance in the absence of naturally occurring Tregs. J Clin Invest 115(7):1923–1933

    Article  CAS  Google Scholar 

  7. Curotto de Lafaille MA, Kutchukhidze N, Shen S, Ding Y, Yee H, Lafaille JJ (2008) Adaptive Foxp3+ regulatory T cell-dependent and -independent control of allergic inflammation. Immunity 29(1):114–126

    Article  CAS  Google Scholar 

  8. Kretschmer K, Apostolou I, Hawiger D, Khazaie K, Nussenzweig MC, von Boehmer H (2005) Inducing and expanding regulatory T cell populations by foreign antigen. Nat Immunol 12:1219–1227

    Article  Google Scholar 

  9. Zhou G, Drake CG, Levitsky HI (2006) Amplification of tumor-specific regulatory T cells following therapeutic cancer vaccines. Blood 107(2):628–636

    Article  CAS  Google Scholar 

  10. Wang L, Pino-Lagos K, De Vries VC, Guleria I, Sayegh MH, Noelle RJ (2008) Programmed death 1 ligand signaling regulates the generation of adaptive Foxp3+CD4+ regulatory T cells. Proc Natl Acad Sci U S A 105(27):9331–9336

    Article  CAS  Google Scholar 

  11. Alonso R, Flament H, Lemoine S, Sedlik C, Bottasso E, Péguillet I et al (2018) Induction of anergic or regulatory tumor-specific CD4+ T cells in the tumor-draining lymph node. Nat Commun 9(1):2113

    Article  Google Scholar 

  12. Samstein RM, Josefowicz SZ, Arvey A, Treuting PM, Rudensky AY (2012) Extrathymic generation of regulatory T cells in placental mammals mitigates maternal-fetal conflict. Cell 150(1):29–38

    Article  CAS  Google Scholar 

  13. Nutsch K, Chai JN, Ai TL, Russler-Germain E, Feehley T, Nagler CR et al (2016) Rapid and efficient generation of regulatory T cells to commensal antigens in the periphery. Cell Rep 17(1):206–220

    Article  CAS  Google Scholar 

  14. Curotto de Lafaille MA, Lino AC, Kutchukhidze N, Lafaille JJ (2004) CD25− T cells generate CD25+ Foxp3+ regulatory T cells by peripheral expansion. J Immunol 173(12):7259–7268

    Article  CAS  Google Scholar 

  15. Paiva RS, Lino AC, Bergman ML, Caramalho Í, Sousa AE, Zelenay S et al (2013) Recent thymic emigrants are the preferential precursors of regulatory T cells differentiated in the periphery. Proc Natl Acad Sci U S A 110(16):6494–6499

    Article  CAS  Google Scholar 

  16. Almeida-Santos J, Bergman M-L, Cabral IA, Demengeot J (2021) Interruption of Thymic activity in adult mice improves responses to tumor immunotherapy. J Immunol 206(5):978–986

    Article  CAS  Google Scholar 

  17. Pratama A, Schnell A, Mathis D, Benoist C (2020) Developmental and cellular age direct conversion of CD4+ T cells into RORγ+ or Helios+ colon Treg cells. J Exp Med 217(1):e20190428

    Article  Google Scholar 

  18. Tanaka A, Sakaguchi S (2017) Regulatory T cells in cancer immunotherapy. Cell Res 27(1):109–118

    Article  CAS  Google Scholar 

  19. Almeida-Santos J, Bergman ML, Amendoeira Cabral I, Correia V, Caramalho Í, Demengeot J (2020) The multifaceted Foxp3fgfp allele enhances spontaneous and therapeutic immune surveillance of cancer in mice. Eur J Immunol 50(3):439–444

    Article  CAS  Google Scholar 

  20. Lahl K, Loddenkemper C, Drouin C, Freyer J, Arnason J, Eberl G et al (2007) Selective depletion of Foxp3+ regulatory T cells induces a scurfy-like disease. J Exp Med 204:57–63. https://doi.org/10.1084/jem.20061852

Download references

Acknowledgments

We thank Ana Regalado for monoclonal antibody production, the teams of Marta Monteiro and Manuel Rebelo for flow cytometry and mouse husbandry, respectively, and Inês Amendoeira Cabral for technical assistance.

This work was supported by the Instituto Gulbenkian de Ciência–Fundação Calouste Gulbenkian and by the Portuguese Scientific Council (Fundação para a Ciência e a Tecnologia). Mouse experiments were also in part supported by the national infrastructure European Regional Development Fund CONGENTO LISBOA-01-0145-FEDER-022170 (FCT, Lisboa2020, Por2020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Almeida-Santos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Almeida-Santos, J., Bergman, ML., Demengeot, J. (2023). Differentiation of Peripheral Treg. In: Ono, M. (eds) Regulatory T-Cells. Methods in Molecular Biology, vol 2559. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2647-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2647-4_6

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2646-7

  • Online ISBN: 978-1-0716-2647-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics