Skip to main content

Target Analysis of NPS in Oral Fluid

  • Protocol
  • First Online:
Methods for Novel Psychoactive Substance Analysis

Abstract

The need to identify and quantify a growing number of NPS represents a crucial challenge for toxicological and forensic purposes. Among biological specimens investigated for pharmaco-toxicological analyses, oral fluid (OF) provides greater advantages compared to blood to prove drug current use. OF is regarded with particular interest for drug screening at workplace and roadside testing, among others. This chapter contains an overview of analytical methodologies applied to determine the most used NPS (synthetic cannabinoids, cathinones, phenethylamines, designer piperazines, tryptamines, synthetic opioids, and designer benzodiazepines), and metabolites in OF by hyphenated techniques, reporting details of specimen extraction, separation, and detection with sensitivity, specificity, and accuracy details. The majority of the published methods used the Intercept® or the Quantisal® device for OF collection, and analytes were mostly extracted by solid-phase or liquid–liquid extraction. Liquid chromatography coupled to (tandem) mass spectrometry was the main applied technique for target analysis of NPS in OF.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

OF:

Oral fluid

NR:

not reported

SPE :

solid-phase extraction

LLE:

liquid–liquid extraction

SPME:

solid-phase microextraction;

SLE:

solid liquid extraction

LFIA:

lateral flow development & manufacturing

ELISA:

enzyme-linked immunosorbent assay

MEPS:

microextraction packed sorbent

GC-MS:

gas chromatography-mass spectrometry

UHPLC-HRMS:

ultra-high performance liquid chromatography high resolution mass spectrometry

UHPLC-MS:

ultra-high-pressure liquid chromatography mass spectrometry

LC-HRMS:

liquid chromatography high resolution mass spectrometry

LC-MS/MS:

liquid chromatography-tandem mass spectrometry

LC-QqQ-MS/MS:

liquid chromatography triple quadrupole tandem mass spectrometry

UPLC-MS/MS:

ultraperformance liquid chromatography-tandem mass spectrometry

US DLLME:

Ultrasonic-assisted dispersive liquid–liquid microextraction

GC/EI-MS:

gas chromatography/electron ionization-mass spectrometry

CE-FD:

capillary electrophoresis-fluorescence detector

IMS:

ion mobility spectrometry

MIP-SPE:

Molecularly Imprinted Polymer-solid-phase extraction

FSF:

fluorescence spectral fingerprinting

SERS:

surface-enhanced Raman spectroscopy

MSTFA:

N-methyl-N(trimethylsily) trifluoroacetamide

ISTD:

internal standard

TPP:

triphenyl phosphate

SWGTOX:

Scientific Working Group for Forensic Toxicology

NH4HCO2:

Ammonium formate

FA:

Formic acid (CH2O2)

ACN:

Acetonitrile

CH2Cl2:

Dichloromethane

EtOAc:

Ethyl acetate

MeOH:

Methanol

NH4Cl:

Ammonium chloride

(NH4)2CO3:

Ammonium carbonate

H3CCOONH4:

Ammonium acetate

H2O:

water

NaH2PO4•H2O:

phosphate buffer

C6H14:

hexane

C7H16:

heptane

Na2B4O7:

sodium tetraborate

CH3CH(OH)CH3:

2-propanol

CH3COOH:

acetic acid

H3PO4:

phosphoric acid

BBS:

borate buffer

NH4OH:

ammonium hydroxide

THF:

tetrahydrofuran

C6H14O:

1-hexanol

PTFE:

poly(tetrafluoroethylene)

(C2H5)2O:

ether

(CH3)2CHCH2CH2OH:

isoamyl alcohol

JWH-122:

(4-methyl-1-naphthalenyl)(1-pentyl-1H-indol-3-yl)-methanone

JWH-210:

(4-ethyl-1-naphthalenyl)(1-pentyl-1H-indol-3-yl)-methanone

UR-144:

(1-pentyl-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)-methanone

JWH-122 N-(4-OH):

(1-(4-hydroxypentyl)-1H-indol-3-yl)(4-methylnaphthalen-1-yl)methanone

JWH-210 N-(4-OH):

(4-ethylnaphthalen-1-yl)(1-(4-hydroxypentyl)-1H-indol-3-yl)methanone

JWH-210 N-(5-OH):

(4-ethylnaphthalen-1-yl)(1-(5-hydroxypentyl)-1H-indol-3-yl)methanone

UR-144 N-(5-OH):

[1-(5-hydroxypentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)-methanone

(+/−) JWH 018 N-(2-hydroxypentyl):

[1-(2-hydroxypentyl)-1H-indol-3-yl]-1-naphthalenyl-methanone

(+/−) JWH 018 N-(3-hydroxypentyl):

(1-(3-hydroxypentyl)-1H-indol-3-yl)(naphthalen-1-yl)methanone

(+/−) JWH 018 N-(4-hydroxypentyl):

(1-(4-hydroxypentyl)-1H-indol-3-yl)(naphthalen-1-yl)-methanone

(+/−) WIN 55,212 (mesylate):

(R)-(5-Methyl-3-(morpholinomethyl)-2,3-dihydro-[1,4]oxazino[2,3,4-hi]indol-6-yl)(naphthalen-1-yl)methanone methanesulfonate

5-chloro AB-PINACA:

N-[(2S)-1-amino-3-methyl-1-oxobutan-2-yl]-1-(5-chloropentyl)indazole-3-carboxamide

5-Fluoro ABICA:

N-[(1S)-1-(aminocarbonyl)-2-methylpropyl]-1-(5-fluoropentyl)-1H-indole-3-carboxamide

5-Fluoro AB-PINACA:

N-[(2S)-1-amino-3-methyl-1-oxobutan-2-yl]-1-(5-fluoropentyl)indazole-3-carboxamide

5-Fluoro ADBICA:

N-[1-(aminocarbonyl)-2,2-dimethylpropyl]-1-(5-fluoropentyl)-1H-indole-3-carboxamide

5-Fluoro ADB-PINACA:

N-[1-(aminocarbonyl)-2,2-dimethylpropyl]-1-(5-fluoropentyl)-1H-indazole-3-carboxamide

5-Fluoro AMB:

N-[[1-(5-fluoropentyl)-1H-indazol-3-yl]carbonyl]-L-valine, methyl ester

5-Fluoro PB-22:

1-(5-fluoropentyl)-8-quinolinyl ester-1H-indole-3-carboxylic acid

5-Fluoro PB-22 3-carboxyindole:

1-(5-fluoropentyl)-1H-indole-3-carboxylic acid

AB-CHMINACA:

N-[(2S)-1-amino-3-methyl-1-oxobutan-2-yl]-1-(cyclohexylmethyl)indazole-3-carboxamide

AB-FUBINACA:

N-[(2S)-1-amino-3-methyl-1-oxobutan-2-yl]-1-[(4-fluorophenyl)methyl]indazole-3-carboxamide

AB-PINACA:

N-[(2S)-1-amino-3-methyl-1-oxobutan-2-yl]-1-pentylindazole-3-carboxamide

AB-PINACA N-(4-hydroxypentyl):

N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(4-hydroxypentyl)-1H-indazole-3-carboxamide

AB-PINACA N-(5-hydroxypentyl):

N-(1-amino-3-methyl-1-oxobutan-2-yl)-1-(5-hydroxypentyl)-1H-indazole-3-carboxamide

AB-PINACA pentanoic acid metabolite:

5-[3-[(1-amino-3-methyl-1-oxobutan-2-yl)carbamoyl]indazol-1-yl]pentanoic acid

ADB-FUBINACA:

N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-[(4-fluorophenyl)methyl]indazole-3-carboxamide

ADBICA:

N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-pentylindole-3-carboxamide

ADB-PINACA:

N-(1-amino-3,3-dimethyl-1-oxobutan-2-yl)-1-pentylindazole-3-carboxamide

AM-1220:

(1-((1-Methylpiperidin-2-yl)methyl)-1H-indol-3-yl)(naphthalen-1-yl)methanone

AM2201:

1-[(5-Fluoropentyl)-1H-indol-3-yl]-(naphthalen-1-yl)methanone

AM2201 2-hydroxyindole:

(1-(5-fluoropentyl)-2-hydroxy-1H-indol-3-yl)(naphthalen-1-yl)methanone

AM2201 5-hydroxyindole:

(1-(5-fluoropentyl)-5-hydroxy-1H-indol-3-yl)(naphthalen-1-yl)methanone

AM2233:

(2-Iodophenyl){1-[(1-methyl-2-piperidinyl)methyl]-1H-indol-3-yl}methanone

AM694:

[1-(5-fluoropentyl)indol-3-yl]-(2-iodophenyl)methanone

HU-211:

(6a,10a)-9-(hydroxymethyl)-6,6-dimethyl-3-(2-methyloctan-2-yl)-6a,7,10,10a-tetrahydro-6H-benzo[c]chromen-1-ol

JWH 007:

(2-methyl-1-pentylindol-3-yl)-naphthalen-1-ylmethanone

JWH 015:

(2-methyl-1-propylindol-3-yl)-naphthalen-1-ylmethanone

JWH 018:

naphthalen-1-yl-(1-pentylindol-3-yl)methanone

JWH 018 2-hydroxyindole:

(2-hydroxy-1-pentyl-1H-indol-3-yl)(naphthalen-1-yl)-methanone

JWH 018 4-hydroxyindole:

(4-hydroxy-1-pentyl-1H-indol-3-yl)(naphthalen-1-yl)-methanone

JWH 018 5-hydroxyindole:

(5-hydroxy-1-pentyl-1H-indol-3-yl)(naphthalen-1-yl)-methanone

JWH 018 6-hydroxyindole:

(6-hydroxy-1-pentyl-1H-indol-3-yl)(naphthalen-1-yl)-methanone

JWH 018 7-hydroxyindole:

(7-hydroxy-1-pentyl-1H-indol-3-yl)(naphthalen-1-yl)-methanone

JWH 018 adamantyl analog:

(1s,3s)-adamantan-1-yl(1-pentyl-1H-indol-3-yl)methanone

JWH 018 N-(4-oxo-pentyl):

5-(3-(1-naphthoyl)-1H-indol-1-yl)pentan-2-one

JWH 018 N-(5-hydroxypentyl):

(1-(5-hydroxypentyl)-1H-indol-3-yl)(naphthalen-1-yl)methanone

JWH 018 N-propanoic acid:

3-(1-naphthalenylcarbonyl)-1H-indole-1-propanoic acid

JWH 019:

1-Hexyl-3-(naphthalen-1-oyl)indole

JWH 020:

(1-heptyl-1H-indol-3-yl)-1-naphthalenyl-methanone

JWH 073:

(1-butylindol-3-yl)-naphthalen-1-ylmethanone

JWH 081:

(4-methoxynaphthalen-1-yl)-(1-pentylindol-3-yl)methanone

JWH 098:

(4-Methoxy-1-naphthyl)(2-methyl-1-pentyl-1H-indol-3-yl)methanone

JWH 182:

(1-pentyl-1H-indol-3-yl)(4-propylnaphthalen-1-yl)methanone

JWH 200:

[1-(2-morpholin-4-ylethyl)indol-3-yl]-naphthalen-1-ylmethanone

JWH 203:

2-(2-chlorophenyl)-1-(1-pentylindol-3-yl)ethanone

JWH 210:

(4-ethylnaphthalen-1-yl)-(1-pentylindol-3-yl)methanone

JWH 249:

2-(2-Bromophenyl)-1-(1-pentylindol-3-yl)ethanone

JWH 251:

2-(2-methylphenyl)-1-(1-pentylindol-3-yl)ethanone

JWH 307:

(5-(2-Fluorophenyl)-1-pentylpyrrol-3-yl)-naphthalen-1-ylmethanone

JWH 307 5′-isomer:

(2-(2-Fluorophenyl)-1-pentyl-1H-pyrrol-3-yl)(naphthalen-2-yl)methanone

JWH 387:

(4-bromonaphthalen-1-yl)(1-pentyl-1H-indol-3-yl)methanone

JWH 398:

1-Pentyl-3-(4-chloro-1-naphthoyl)indole

JWH 412:

(4-fluoronaphthalen-1-yl)(1-pentyl-1H-indol-3-yl)methanone

MAM2201 N-(3-fluoropentyl) isomer:

(1-(3-fluoropentyl)-1H-indol-3-yl)(4-methylnaphthalen-1-yl)methanone

MAM2201 N-(5-chloropentyl) analog:

(1-(5-chloropentyl)-1H-indol-3-yl)(4-methylnaphthalen-1-yl)methanone

PB-22:

1-pentyl-8-quinolinyl ester-1H-indole-3-carboxylic acid

PB-22 3-carboxyindole:

1-pentyl-1H-indole-3-carboxylic acid

PB-22 N-(4-hydroxypentyl):

quinolin-8-yl 1-(4-hydroxypentyl)-1H-indole-3-carboxylate

PB-22 N-(5-hydroxypentyl):

quinolin-8-yl 1-(5-hydroxypentyl)-1H-indole-3-carboxylate

PB-22 N-pentanoic acid:

5-(3-((quinolin-8-yloxy)carbonyl)-1H-indol-1-yl)pentanoic acid

RCS-4:

2-(4-methoxyphenyl)-1-(1-pentyl-indol-3-yl)methanone

RCS-4-C4 homolog:

(1-butylindol-3-yl)-(4-methoxyphenyl)methanone

RCS-8:

1-(2-Cyclohexylethyl)-3-(2-methoxyphenylacetyl)indole

THJ 018:

naphthalen-1-yl-(1-pentylindazol-3-yl)methanone

THJ 2201:

[1-(5-fluoropentyl)indazol-3-yl]-naphthalen-1-ylmethanone

XLR11:

[1-(5-fluoropentyl)indol-3-yl]-(2,2,3,3-tetramethylcyclopropyl)methanone

XLR11 6-hydroxyindole:

1-(5-fluoropentyl)-6-hydroxy-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)-methanone

XLR11 N-(4-hydroxypentyl):

[1-(5-fluoro-4-hydroxypentyl)indol-3-yl]-(2,2,3,3-tetramethylcyclopropyl)methanone

5F-ADB:

(methyl (s)-2-[1-(5-fluoropentyl)-1H-indazole-3-carboxamido]-3,3-dimethylbutanoate)

MMB-CHMICA:

(methyl(n-{[1-(cyclohexylmethyl)-1H-indol-3-yl]carbonyl}-l-valinate))

THJ-2201:

([1-(5-fluoropentyl)-1H-indazol-3-yl](1-naphthyl)methanone)

CUMYL-4CN-BINACA :

(1-(4-cyanobutyl)-n-(2-phenylpropan-2-yl)-1H-indazole-3-carboxamide)

MDMB-CHMCZCA:

(methyl (s)-2-(9-(cyclohexylmethyl)-9H-carbazole-3-carboxamido)-3,3-dimethylbutanoate)

APINACA (AKB-48):

N-(adamantan-1-yl)-1-pentyl-1H-indazole-3-carboxamide

MMB-FUBINACA:

Methyl (2S)-2-{[1-[(4-fluorophenyl)methyl]indazole-3-carbonyl]amino}-3-methylbutanoate

JWH-176:

1-([(1E)-3-Pentylinden-1-ylidine]methyl)naphthalene

JWH-250:

2-(2-Methoxyphenyl)-1-(1-pentylindol-3-yl)ethanone

AM-694:

1-[(5-Fluoropentyl)-1H-indol-3-yl]-(2-iodophenyl)methanone

5F-PB-22:

1-Pentyfluoro-1H-indole-3-carboxylic acid 8-quinolinyl ester

CP47,497:

2-[(1R,3S)-3-hydroxycyclohexyl]-5-(2-methyloctan-2-yl)phenol

CP47,497(C8):

2-[(1R,3S)-3-hydroxycyclohexyl]-5-(2-methylnonan-2-yl)phenol

5F-AKB48:

N-(adamantan-1-yl)-1-(5-fluoropentyl)-1H-indazole-3-carboxamide

AB-005:

[1-[(1-Methylpiperidin-2-yl)methyl]-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)-methanone

AB-CHMINACA:

N-[(2S)-1-Amino-3-methyl-1-oxobutan-2-yl]-1-(cyclohexylmethyl)indazole-3-carboxamide

STS-135:

N-(Adamantan-1-yl)-1-(5-fluoropentyl)-1H-indole-3-carboxamide

A-796,260:

[1-(2-morpholin-4-ylethyl)-1H-indol-3-yl]-(2,2,3,3-tetramethylcyclopropyl)methanone

MAM2201:

(1-(5-Fluoropentyl)-1H-indol-3-yl)(4-methyl-1-naphthalenyl)methanone

5-Fluoro PB-22:

1-Pentyfluoro-1H-indole-3-carboxylic acid 8-quinolinyl ester

AB-PINACA 5-pentanoic acid metabolite:

5-[3-[(1-Carbamoyl-2-methyl-propyl)carbamoyl]indazol-1-yl]pentanoic acid

APINACA 5-Hydroxypentyl:

1-(5-hydroxypentyl)-N-tricyclo[3.3.1.13,7]dec-1-yl-1H-indazole-3-carboxamide

AM2201 4-Hydroxypentyl:

(1-(5-fluoro-4-hydroxypentyl)-1H-indol-3-yl)(naphthalen-1-yl)methanone

JWH-018 5-Pentanoic acid:

5-(3-(1-naphthoyl)-1H-indol-1-yl)-pentanoic acid

JWH-019 5- Hydroxyhexyl:

[1-(5-hydroxyhexyl)-1H-indol-3-yl]-1-naphthalenyl-methanone

JWH-073 4-Butanoic acid:

4-(3-(1-naphthoyl)-1H-indol-1-yl)-butanoic acid

JWH-122 4-Hydroxypentyl:

(1-(4-hydroxypentyl)-1H-indol-3-yl)(4-methylnaphthalen-1-yl)methanone

JWH-210 4-Hydroxypentyl:

(4-ethylnaphthalen-1-yl)(1-(4-hydroxypentyl)-1H-indol-3-yl)methanone

JWH-250 4-Hydroxypentyl:

1-(1-(4-hydroxypentyl)-1H-indol-3-yl)-2-(2-methoxyphenyl)ethanone

MAM2201 4-Hydroxypentyl:

(1-(5-fluoro-4-hydroxypentyl)-1H-indol-3-yl)(4-methylnaphthalen-1-yl)methanone

UR-144 4-Hydroxypentyl:

(1-(4-hydroxypentyl)-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)methanone

UR-144 5-Pentanoic acid:

5-(3-(2,2,3,3-tetramethylcyclopropanecarbonyl)-1H-indol-1-yl)pentanoic acid

XLR-11 4-Hydroxypentyl:

[1-(5-fluoro-4-hydroxypentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)-methanone

MAM-2201 N-pentanoic acid:

5-(3-(4-methyl-1-naphthoyl)-1H-indol-1-yl)pentanoic acid

UR-144 N-5-hydroxypentyl:

[1-(5-hydroxypentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)-methanone

WIN-55,212-2:

(R)-(+)-[2,3-Diidro-5-metil-3-(4-morfolinilmetil)pirrolo[1,2,3-de]-1,4-benzossazin-6-il]-1-naftalenilmetanone

JWH-018 N-5-hydroxypentyl:

(1-(5-hydroxypentyl)-1H-indol-3-yl)(naphthalen-1-yl)methanone;

UR-144-PYR:

3,3,4-trimethyl-1-(1-pentyl-1H-indol-3-yl)pent-4-en-1-one

XLR11-PYR:

1-(1-(5-fluoropentyl)-1H-indol-3-yl)-3,3,4-trimethylpent-4-en-1-one

4-hydroxy-UR-144:

[1-(5-hydroxypentyl)-1H-indol-3-yl](2,2,3,3-tetramethylcyclopropyl)methanone

4-hydroxy-XLR11:

(1-(5-fluoro-4-hydroxypentyl)-1H-indol-3-yl)(2,2,3,3-tetramethylcyclopropyl)-methanone

AM-694:

1-[(5-Fluoropentyl)-1H-indol-3-yl]-(2-iodophenyl)methanone

HU-210:

(6aR,10aR)-9-(Hydroxymethyl)-6,6-dimethyl-3-(2-methyloctan-2-yl)-6a,7,10,10a-tetrahydrobenzo[c]chromen-1-ol

AM-2232:

5-[3-(naphthalene-1-carbonyl)indol-1-yl]pentanenitrile

Methanandamide:

(5Z,8Z,11Z,14Z)-N-[(2R)-1-Hydroxypropan-2-yl]icosa-5,8,11,14-tetraenamide

RCS ortho isomers:

(2-methoxyphenyl)(1-pentyl-1H-indol-3-yl)methanone

WIN 48,098:

(4-Methoxyphenyl)-[2-methyl-1-(2-morpholin-4-ylethyl)indol-3-yl]methanone

CP 47497:

2-[(1RS,3SR)-3-Hydroxycyclohexyl]-5-(1,1-dimethylheptyl)phenol

CP 47497 C8:

rel-5-(1,1-dimethyloctyl)-2-[(1R,3S)-3-hydroxycyclohexyl]-phenol

4-MMC:

mephedrone

4-MEC:

4-methylethcathinone

ETH-CAT:

ethcatinone

MDPV :

3,4-methylenedioxypyrovalerone

4-FMC:

flephedrone

PMMC:

methedrone

bk-MBDB:

butylone

bk-MDEA:

ethylone

bk-MBDP:

pentylone

N,N-DMC:

dimethylcathinone

α-PVP:

α-pyrrolidinopentiophenone

MPBP:

4′-Methyl-α-pyrrolidinobutiophenone

MABP:

buphedrone

MIP:

molecularly imprinted polymer

3-MMC:

3-methylmethcathinone

3-FMC:

3-fluoromethcathinone

4-MeMABP:

4-methylbuphedrone

4-CMC:

4-chloromethcathinone

4-MMC-MeO:

mexedrone

α-PHP:

α-pyrrolidinohexiophenone

MDPPP:

3′,4′-methylenedioxy-α-pyrrolidinopropiophenone

4-CEC:

4-chloroethcathinone

NEP:

N-ethylpentylone

MPHP:

4′-methyl-α-pyrrolidinohexiophenone

4Cl-PVP:

4-chloro-α-pyrrolidinopentiophenone

TH-PVP:

3′,4′-tetramethylene-α-pyrrolidinopentiophenone

PV9:

1-phenyl-2-(pyrrolidin-1-yl)octan-1-one

3,4-MDPHP:

3′,4′-Methylenedioxy-α-pyrrolidinohexiophenone

DMBDP:

dipentylone

bk-MDDMA:

dimethylone

3,4-DMMC:

3,4-Dimethylmethcathinone

25B-NBOH:

2-({[2-(4-bromo-2,5-dimethoxyphenyl)ethyl]amino}methyl)phenol

25B-NBOMe:

2-(4-bromo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

25C-NBOH:

2-({[2-(4-chloro-2,5-dimethoxyphenyl)ethyl]amino}methyl)phenol

25C-NBOMe:

2-(4-Chloro-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethan-1-amine

25D-NBOMe:

2-(2,5-dimethoxy-4-methylphenyl)-N-(2-methoxybenzyl)ethanamine

25E-NBOH:

2-({[2-(4-ethyl-2,5-dimethoxyphenyl)ethyl]amino}methyl)phenol

25E-NBOMe:

2-(4-ethyl-2,5-dimethoxyphenyl)-N-(2-methoxybenzyl)ethanamine

25G-NBOMe:

2-(2,5-dimethoxy-3,4-dimethylphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

25H-NBOMe:

2-(2,5-Dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

25I-NBOH:

2-((2-(4-Iodo-2,5-dimethoxyphenyl)ethylamino)methyl)phenol

25I-NBOMe:

2-(4-iodo-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

25N-NBOMe:

2-(2,5-Dimethoxy-4-nitrophenyl)-N-[(2-methoxyphenyl)methyl]ethan-1-amine

25T2-NBOMe:

2-(4-trifluoromethyl-2,5-dimethoxyphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

2C-B:

2-(4-bromo-2,5-dimethoxyphenyl)ethanamine

2C-C:

2-(4-Chloro-2,5-dimethoxyphenyl)ethan-1-amine

2C-D:

2-(2,5-Dimethoxy-4-methylphenyl)ethan-1-amine

2C-E:

2-(4-Ethyl-2,5-dimethoxyphenyl)ethanamine

2C-G:

2-(2,5-Dimethoxy-3,4-dimethylphenyl)ethan-1-amine

2C-I:

2-(4-Iodo-2,5-dimethoxyphenyl)ethan-1-amine

2C-T:

2-[2,5-Dimethoxy-4-(methylsulfanyl)phenyl]ethan-1-amine

2C-T-2:

2-[4-(Ethylsulfanyl)-2,5-dimethoxyphenyl]ethan-1-amine

2C-T-4:

2-{2,5-Dimethoxy-4-[(propan-2-yl)sulfanyl]phenyl}ethan-1-amine

PMA:

1-(4-methoxyphenyl)propan-2-amine

PMMA:

1-(4-Methoxyphenyl)-N-methylpropan-2-amine

TMA:

1-(3,4,5-Trimethoxyphenyl)propan-2-amine,3,4,5-trimethoxyamphetamine

2C-T-7:

2-[2,5-Dimethoxy-4-(propylsulfanyl)phenyl]ethan-1-amine

DOET:

1-(4-Ethyl-2,5-dimethoxyphenyl)propan-2-amine

DOM:

1-(2,5-Dimethoxy-4-methylphenyl)propan-2-amine

DOB:

1-(4-Bromo-2,5-dimethoxyphenyl)propan-2-amine

DMA:

N,N-Dimethylacetamide

4-FA:

4-Fluoroamphetamine

MDEA:

3,4-Methylenedioxy-N-ethylamphetamine

MDA:

1-(2H-1,3-Benzodioxol-5-yl)propan-2-amine

MBDB:

1-(1,3-Benzodioxol-5-yl)-N-methylbutan-2-amine

MTA:

alpha-Methyl-p-(methylthio)phenethylamine

MDPV:

1-(1,3-Benzodioxol-5-yl)-2-(pyrrolidin-1-yl)pentan-1-one

25T4-NBOMe:

2-(2,5-Dimethoxy-4-propan-2-ylsulfanylphenyl)-N-[(2-methoxyphenyl)methyl]ethanamine

Ethylphenidate:

(RS)-Ethyl 2-phenyl-2-piperidin-2-ylacetate

BZP:

1-Benzylpiperazine

TFMPP:

1-[3-(trifluoromethyl)phenyl]piperazine

mCPP:

1-(3-chlorophenyl)piperazine

Piperonyl piperazine:

1-(Benzo[d][1,3]dioxol-5-ylmethyl)piperazine

4-MeOPP:

1-(4-methoxyphenyl)-piperazine

DMT:

2-(1H-Indol-3-yl)-N,N-dimethylethanamine

5-MeO-DMT:

2-(5-Methoxy-1H-indol-3-yl)-N,N-dimethylethanamine

AMT:

1-(1H-Indol-3-yl)propan-2-amine

AcO-DMT:

[3-[2-(dimethylamino)ethyl]-1H-indol-4-yl] acetate

5-MeO-AMT:

1-(5-methoxy-1H-indol-3-yl)propan-2-amine

4-OH-DET:

3-(2-Diethylaminoethyl)-1H-indol-4-ol

5-MeO-MIPT:

N-[2-(5-methoxy-1H-indol-3-yl)ethyl]-N-methylpropan-2-amine

4-AcO-DIPT:

3-{2-[Di(propan-2-yl)amino]ethyl}-1H-indol-4-yl acetate

5-MeO-DPT:

N-[2-(5-methoxy-1H-indol-3-yl)ethyl]-N-propylpropan-1-amine

5-MeO-DALT:

N-[2-(5-methoxy-1H-indol-3-yl)ethyl]-N-(prop-2-en-1-yl)prop-2-en-1-amine

U-47700:

3,4-Dichloro-N-[(1R,2R)-2-(dimethylamino)cyclohexyl]-N-methylbenzamide

AH-7921:

3,4-dichloro-N-{[1-(dimethylamino)cyclohexyl]methyl}benzamide

U-49900:

trans-3,4-dichloro-N-[2-(diethylamino)cyclohexyl]-N-methyl-benzamide

U-50488:

2-(3,4-dichlorophenyl)-N-methyl-N-[(1R,2R)-2-pyrrolidin-1-ylcyclohexyl]acetamide

MT-45:

1-cyclohexyl-4-(1,2-diphenylethyl)piperazine

W-18:

4-chloro-N-[(2Z)-1-[2-(4-nitrophenyl)ethyl]piperidin-2-ylidene]benzene-1-sulfonamide

W-15:

(NE)-4-chloro-N-[1-(2-phenylethyl)piperidin-2-ylidene]benzenesulfonamide

Fentanyl:

N-phenyl-N-[1-(2-phenylethyl)piperidin-4-yl]propanamide

Carfentanil:

methyl 1-(2-phenylethyl)-4-[phenyl(propanoyl)amino]piperidine-4-carboxylate

Norfentanyl:

N-phenyl-N-(piperidin-4-yl)propionamide

Norcarfentanyl:

4-[(1-oxopropyl)phenylamino]-4-piperidinecarboxylic acid, methyl ester

Remifentanil:

methyl 1-(3-methoxy-3-oxopropyl)-4-(N-phenylpropanamido)piperidine-4-carboxylate

Acetyl Fentanyl:

N-(1-Phenethylpiperidin-4-yl)-N-phenylacetamide

Alfentanyl:

N-{1-[2-(4-ethyl-5-oxo-4,5-dihydro-1H-1,2,3,4-tetrazol-1-yl)ethyl]-4-(methoxymethyl)piperidin-4-yl}-N-phenylpropanamide

4-ANPP:

N-Phenyl-1-(2-phenylethyl)piperidin-4-amine

Sufentanil:

N-[4-(Methoxymethyl)-1-(2-thiofuran-2-ylethyl)-4-piperidyl]-N-phenylpropanamide

Valeryl fentanyl:

N-(1-(2-Phenylethyl)-4-piperidinyl)-N-phenylpentylamide

Furanyl fentanyl:

N-Phenyl-N-[1-(2-phenylethyl)piperidin-4-yl]furan-2-carboxamide

Remifentanil:

methyl 1-(3-methoxy-3-oxopropyl)-4-(N-phenylpropanamido)piperidine-4-carboxylate

Methoxyacetyl norfentanyl:

2-methoxy-N-phenyl-N-piperidin-4-ylacetamide

Acetyl norfentanyl:

N-phenyl-N-(piperidin-4-yl)acetamide

Carboxy butyryl fentanyl:

4-oxo-4-(N-[1-(2-phenylethyl)piperidin-4-yl]anilino)butanoic acid

Carboxy valeryl fentanyl:

5-oxo-5-[phenyl[1-(2-phenylethyl)-4-piperidinyl]amino]-pentanoic acid

Methoxyacetyl fentanyl:

2-Methoxy-N-(1-phenethylpiperidin-4-yl)-N-phenylacetamide

Furanyl norfentanyl:

N-phenyl-N-4-piperidinyl-2-furancarboxamide

Cis-3-methyl norfentanyl:

cis-N-(3-methyl-4-piperidinyl)-N-phenyl-propanamide

Trans-3-methyl norfentanyl:

trans-N-(3-methyl-4-piperidinyl)-N-phenyl-propanamide

Butyryl norfentanyl:

N-Phenyl-N-(4-piperidinyl)butanamide

Cycloproyl norfentanyl:

N-phenyl-N-4-piperidinyl-cyclopropanecarboxamide

β-hydroxyfentanyl:

N-[1-(2-Hydroxy-2-phenylethyl)piperidin-4-yl]-N-phenylpropanamide

Despropionil-p-F-fentanyl:

N-(4-fluorophenyl)-1-(2-phenylethyl)-4-piperidinamine

Phenyl acetyl fentanyl:

N-(1-phenethylpiperidin-4-yl)-N,2-diphenylacetamide

Bentazepam:

5-phenyl-3,4,6,7,8,9-hexahydro-[1]benzothiolo[2,3-e][1,4]diazepin-2-one

Diclazepam:

7-Chloro-5-(2-chlorophenyl)-1-methyl-1,3-dihydro-2H-1,4-benzodiazepin-2-one

Etizolam:

4-(2-Chlorophenyl)-2-ethyl-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine

Flubromazepam:

7-Bromo-5-(2-fluorophenyl)-1,3-dihydro-1,4-benzodiazepin-2-one

Phenazepam:

7-Bromo-5-(2-chlorophenyl)-1,3-dihydro-2H-1,4-benzodiazepin-2-one

Pyrazolam:

8-Bromo-1-methyl-6-(pyridin-2-yl)-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine

Metizolam:

4-(2-Chlorophenyl)-2-ethyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine

Flunitrazolam:

1-methyl-8-nitro-6-(2-fluorophenyl)-4H-[1,2,4]triazolo[4,3-a][1,4]benzodiazepine

Deschloroetizolam:

4-phenyl-2-ethyl-9-methyl-6H-thieno[3,2-f][1,2,4]triazolo[4,3-a][1,4]diazepine

References

  1. Bosker WM, Huestis MA (2009) Oral fluid testing for drugs of abuse. Clin Chem 55:1910–1931

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Allen KR (2011) Screening for drugs of abuse: which matrix, oral fluid or urine? Ann Clin Biochem 48:531–541

    Article  CAS  PubMed  Google Scholar 

  3. De La Torre R, Farré M, Navarro M, Pacifici R, Zuccaro P, Pichini S (2004) Clinical pharmacokinetics of Amfetamine and related substances: monitoring in conventional and non-conventional matrices (2004). Clin Pharmacokinet 43:157–185

    Article  PubMed  Google Scholar 

  4. Pichini S, Altieri I, Zuccaro P, Pacifici R (1996) Drug monitoring in nonconventional biological fluids and matrices. Clin Pharmacokinet 30:211–228

    Article  CAS  PubMed  Google Scholar 

  5. Pujadas M, Pichini S, Civit E, Santamariña E, Perez K, de la Torre R (2007) A simple and reliable procedure for the determination of psychoactive drugs in oral fluid by gas chromatography-mass spectrometry. J Pharm Biomed Anal 44:594–601

    Article  CAS  PubMed  Google Scholar 

  6. Busardò FP, Pichini S, Pellegrini M, Montana A, Lo Faro AF, Zaami S, Graziano S (2018) Curr Neuropharmacol 16:84–96

    PubMed  PubMed Central  Google Scholar 

  7. Blandino V, Wetzel J, Kim J, Haxhi P, Curtis R, Concheiro M (2017) Oral fluid vs. urine analysis to monitor synthetic cannabinoids and classic drugs recent exposure Vincent. Curr Pharm Des 18:796–805

    CAS  Google Scholar 

  8. Navarro M, Pichini S, Farré M, Ortuño J, Roset PN, Segura J, de la Torre R (2001) Usefulness of saliva for measurement of 3,4-methylenedioxymethamphetamine and its metabolites: correlation with plasma drug concentrations and effect of salivary pH. Clin Chem 47:1788–1795

    Article  CAS  PubMed  Google Scholar 

  9. Desrosiers NA, Huestis MA (2019) Oral fluid drug testing: analytical approaches, issues and interpretation of results. J Anal Toxicol 43:415–443

    Article  CAS  PubMed  Google Scholar 

  10. Graziano S, Anzillotti L, Mannocchi G, Pichini S, Busardò FP (2019) Screening methods for rapid determination of New Psychoactive Substances (NPS) in conventional and non-conventional biological matrices. J Pharm Biomed Anal 163:170–179

    Article  CAS  PubMed  Google Scholar 

  11. Drummer OH (2006) Drug testing in oral fluid. Clin Biochem Rev 27:147–159

    PubMed  PubMed Central  Google Scholar 

  12. Vindenes V, Yttredal B, Øiestad EL, Waal H, Bernard JP, Mørland JG, Christophersen AS (2011) Oral fluid is a viable alternative for monitoring drug abuse: detection of drugs in oral fluid by liquid chromatography-tandem mass spectrometry and comparison to the results from urine samples from patients treated with Methadone or Buprenorphine. J Anal Toxicol 35:32–39

    Article  CAS  PubMed  Google Scholar 

  13. Jufer R, Walsh SL, Cone EJ, Sampson-Cone A (2006) Effect of repeated cocaine administration on detection times in oral fluid and urine. J Anal Toxicol 30:458–462

    Article  CAS  PubMed  Google Scholar 

  14. Crouch DJ (2005) Oral fluid collection: the neglected variable in oral fluid testing. Forensic Sci Int 150:165–173

    Article  CAS  PubMed  Google Scholar 

  15. Choo RE, Huestis MA (2004) Oral fluid as a diagnostic tool. Clin Chem Lab Med 42:1273–1287

    Article  CAS  PubMed  Google Scholar 

  16. Concheiro M, Jones H, Johnson RE, Choo R, Huestis MA (2011) Preliminary buprenorphine sublingual tablet pharmacokinetic data in plasma, oral fluid and sweat during treatment of opioid- dependent pregnant women. Ther Drug Monit 23:1–7

    Google Scholar 

  17. Smink BE, Hofman BJA, Dijkhuizen A, Lusthof KJ, De Gier JJ, Egberts ACG, Uges DRA (2008) The concentration of oxazepam and oxazepam glucuronide in oral fluid, blood and serum after controlled administration of 15 and 30 mg oxazepam. Br J Clin Pharmacol 66:556–560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Jenkins AJ, Oyler JM, Cone EJ (1995) Comparison of heroin and cocaine concentration in saliva with concentrations in blood and plasma. J Anal Toxicol 19:359–374

    Article  CAS  PubMed  Google Scholar 

  19. Newmeyer MN, Swortwood MJ, Barnes AJ, Abulseoud OA, Scheidweiler KB, Huestis MA (2016) Free and glucuronide whole blood cannabinoids’ pharmacokinetics after controlled smoked, vaporized, and oral Cannabis administration in frequent and occasional Cannabis users: Identification of recent Cannabis intake. Clin Chem 62:1579–1592

    Article  CAS  PubMed  Google Scholar 

  20. Cone EJ, Oyler J, Darwin WD (1997) Cocaine disposition in saliva following intravenous, intranasal, and smoked administration. J Anal Toxicol 21:465–475

    Article  PubMed  Google Scholar 

  21. Schepers RJF, Oyler JM, Joseph RE, Cone EJ, Moolchan ET, Huestis MA (2003) Methamphetamine and amphetamine pharmacokinetics in oral fluid and plasma after controlled oral methamphetamine administration to human volunteers. Clin Chem 49:121–132

    Article  CAS  PubMed  Google Scholar 

  22. European Drug Report 2021: Trends and Developments at https://www.emcdda.europa.eu/publications/edr/trends-developments/2021_en. Last accessed 14 June 2021

  23. Langel K, Engblom C, Pehrsson A, Gunnar T, Ariniemi K, Lillsunde P (2008) Drug testing in oral fluid – evaluation of sample collection devices. J Anal Toxicol 32:393–401

    Article  CAS  PubMed  Google Scholar 

  24. Lee D (2018) Oral fluid drug testing in pain management practice: factors to consider before choosing the alternative biological matrix. J Appl Lab Med 2:598–609

    Article  CAS  PubMed  Google Scholar 

  25. Marchei E, Malaca S, Graziano S, Gottardi M, Pichini S, Busardò FP (2020) Stability and degradation pathways of different psychoactive drugs in neat and in buffered oral fluid. J Anal Toxicol 44:570–579

    Article  CAS  PubMed  Google Scholar 

  26. Kerrigan S (2013) Sampling, storage and stability. Sample chapter from Clarke’s Analytical Forensic Toxicology, second edition 335–356

    Google Scholar 

  27. Cohier C, Mégarbane B, Roussel O (2017) Illicit drugs in oral fluid: evaluation of two collection devices. J Anal Toxicol 41:71–76

    Article  CAS  PubMed  Google Scholar 

  28. La Maida N, Pellegrini M, Papaseit E, Pérez-Mañá C, Poyatos L, Ventura M, Galindo L, Busardò FP, Pichini S, Farré M, Marchei E (2020) Determination of the synthetic cannabinoids JWH-122, JWH-210, UR-144 in oral fluid of consumers by GC-MS and quantification of parent compounds and metabolites by UHPLC-MS/MS. Int J Mol Sci 21:9414

    Article  PubMed Central  Google Scholar 

  29. Mulet CT, Tarifa A, DeCaprio AP (2020) Comprehensive analysis of synthetic cannabinoids and metabolites in oral fluid by online solid-phase extraction coupled to liquid chromatography-triple quadrupole-mass spectrometry. Anal Bioanal Chem 412:7937–7953

    Article  CAS  PubMed  Google Scholar 

  30. da Cunha KF, Oliveira KD, Huestis MA, Costa JL (2020) Screening of 104 new psychoactive substances (NPS) and other drugs of abuse in oral fluid by LC-MS-MS. J Anal Toxicol 44:697–707

    Article  PubMed  Google Scholar 

  31. Sorribes-Soriano A, Verdeguer J, Pastor A, Armenta S, Esteve-Turrillas FA (2021) Determination of third-generation synthetic cannabinoids in Oral fluids. J Anal Toxicol 45:331–336

    Article  CAS  PubMed  Google Scholar 

  32. Cannaert A, Ramírez Fernández MDM, Theunissen EL, Ramaekers JG, Wille SMR, Stove CP (2020) Semiquantitative activity-based detection of JWH-018, a synthetic cannabinoid receptor agonist, in oral fluid after vaping. Anal Chem 92:6065–6071

    Article  CAS  PubMed  Google Scholar 

  33. May B, Naqi HA, Tipping M, Scott J, Husbands SM, Blagbrough IS, Pudney CR (2019) Synthetic cannabinoid receptor agonists detection using fluorescence spectral fingerprinting. Anal Chem 91:12971–12979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Anzillotti L, Marezza F, Calò L, Andreoli R, Agazzi S, Bianchi F, Careri M, Cecchi R (2019) Determination of synthetic and natural cannabinoids in oral fluid by solid-phase microextraction coupled to gas chromatography/mass spectrometry: a pilot study. Talanta 201:335–341

    Article  CAS  PubMed  Google Scholar 

  35. Malaca S, Busardò FP, Gottardi M, Pichini S, Marchei E (2019) Dilute and shoot ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS) analysis of psychoactive drugs in oral fluid. J Pharm Biomed Anal 170:63–67

    Article  CAS  PubMed  Google Scholar 

  36. Deriu C, Conticello I, Mebel AM, McCord B (2019) Micro solid phase extraction surface-enhanced Raman spectroscopy (mu-SPE/SERS) screening test for the detection of the synthetic cannabinoid JWH-018 in Oral fluid. Anal Chem 91:4780–4789

    Article  CAS  PubMed  Google Scholar 

  37. Williams M, Martin J, Galettis P (2019) A validated method for the detection of synthetic cannabinoids in Oral fluid. J Anal Toxicol 43:10–17

    Article  CAS  PubMed  Google Scholar 

  38. Fojtíková L, Šuláková A, Blažková M, Holubová B, Kuchař M, Mikšátková P, Lapčík O, Fukal L (2017) Lateral flow immunoassay and enzyme linked immunosorbent assay as effective immunomethods for the detection of synthetic cannabinoid JWH-200 based on the newly synthesized hapten. Toxicol Rep 5:65–75

    Article  PubMed  PubMed Central  Google Scholar 

  39. Rocchi R, Simeoni MC, Montesano C, Vannutelli G, Curini R, Sergi M, Compagnone D (2018) Analysis of new psychoactive substances in oral fluids by means of microextraction by packed sorbent followed by ultra-high-performance liquid chromatography-tandem mass spectrometry. Drug Test Anal 10:865–873

    Article  CAS  PubMed  Google Scholar 

  40. Amaratunga P, Thomas C, Lemberg BL, Lemberg D (2014) Quantitative measurement of XLR11 and UR-144 in oral fluid by LC-MS-MS. J Anal Toxicol 38:315–321

    Article  CAS  PubMed  Google Scholar 

  41. Øiestad EL, Johansen U, Christophersen AS, Karinen R (2013) Screening of synthetic cannabinoids in preserved oral fluid by UPLC-MS/MS. Bioanalysis 5:2257–2268

    Article  PubMed  Google Scholar 

  42. Rodrigues WC, Catbagan P, Rana S, Wang G, Moore C (2013) Detection of synthetic cannabinoids in oral fluid using ELISA and LC-MS-MS. J Anal Toxicol 37:526–533

    Article  CAS  PubMed  Google Scholar 

  43. Kneisel S, Speck M, Moosmann B, Corneillie TM, Butlin NG, Auwärter V (2013) LC/ESI-MS/MS method for quantification of 28 synthetic cannabinoids in neat oral fluid and its application to preliminary studies on their detection windows. Anal Bioanal Chem 405:4691–4706

    Article  CAS  PubMed  Google Scholar 

  44. Strano-Rossi S, Anzillotti L, Castrignanò E, Romolo FS, Chiarotti M (2012) Ultra-high performance liquid chromatography-electrospray ionization-tandem mass spectrometry screening method for direct analysis of designer drugs, “spice” and stimulants in oral fluid. J Chromatogr A 1258:37–42

    Article  CAS  PubMed  Google Scholar 

  45. Peters FT, Wissenbach DK, Busardò FP, Marchei E, Pichini S (2017) Method development in forensic toxicology. Curr Pharm Des 23:5455–5467

    CAS  PubMed  Google Scholar 

  46. Coulter C, Garnier M, Moore C (2011) Synthetic cannabinoids in oral fluid. J Anal Toxicol 35:424–430

    Article  CAS  PubMed  Google Scholar 

  47. Amaratunga P, Lorenz Lemberg B, Lemberg D (2013) Quantitative measurement of synthetic cathinones in oral fluid. J Anal Toxicol 37:622–628

    Article  CAS  PubMed  Google Scholar 

  48. de Castro A, Lendoiro E, Fernández-Vega H, Steinmeyer S, López-Rivadulla M, Cruz A (2014) Liquid chromatography tandem mass spectrometry determination of selected synthetic cathinones and two piperazines in oral fluid. Cross reactivity study with an on-site immunoassay device. J Chromatogr A 1374:93–101

    Article  PubMed  Google Scholar 

  49. Mercolini L, Protti M, Catapano MC, Rudge J, Sberna AE (2016) LC–MS/MS and volumetric absorptive microsampling for quantitative bioanalysis of cathinone analogues in dried urine, plasma and oral fluid samples. J Pharm Biomed Anal 123:186–194

    Article  CAS  PubMed  Google Scholar 

  50. Miller B, Kim J, Concheiro M (2017) Stability of synthetic cathinones in oral fluid samples. Forensic Sci Int 274:13–21

    Article  CAS  PubMed  Google Scholar 

  51. Richeval C, Wille SMR, Nachon-Phanithavong M, Samyn N, Allorge D, Gaulier J (2018) New psychoactive substances in oral fluid of French and Belgian drivers in 2016. Int J Drug Policy 57:1–3

    Article  PubMed  Google Scholar 

  52. Ares AM, Fernández P, Regenjo M, Fernández AM, Carro AM, Lorenzo RA (2017) A fast bioanalytical method based on microextraction by packed sorbent and UPLC–MS/MS for determining new psychoactive substances in oral fluid. Talanta 174:454–461

    Article  CAS  PubMed  Google Scholar 

  53. Fernández P, Regenjo M, Ares A, Fernández AM, Lorenzo RA, Carro AM (2019) Simultaneous determination of 20 drugs of abuse in oral fluid using ultrasound-assisted dispersive liquid–liquid microextraction. Anal Bioanal Chem 411:193–203

    Article  PubMed  Google Scholar 

  54. Williams M, Martin J, Galettis P (2017) A validated method for the detection of 32 Bath salts in oral fluid. J Anal Toxicol 41:659–669

    Article  CAS  PubMed  Google Scholar 

  55. Sorribes-Soriano A, Esteve-Turrillas FA, Armenta S, Amorós P, Herrero-Martínez JM (2019) Amphetamine-type stimulants analysis in oral fluid based on molecularly imprinting extraction. Anal Chim Acta 1052:73–83

    Article  CAS  PubMed  Google Scholar 

  56. Di Trana A, Mannocchi G, Pirani F, Maida NL, Gottardi M, Pichini S, Busardò FP (2020) A comprehensive HPLC-MS-MS screening method for 77 new psychoactive substances, 24 classic drugs and 18 related metabolites in blood, urine and oral fluid. J Anal Toxicol 44:769–783

    Article  PubMed  Google Scholar 

  57. Accioni F, Nieddu M, Corona P, Boatto G (2020) Hexanol-based supramolecular solvents tool for the determination of 11 illicit phenethylamines in oral fluid by LC-MS/MS. J Anal Toxicol 44:15–21

    PubMed  Google Scholar 

  58. Toennes SW, Schneider D, Pogoda W, Paulke A, Wunder C, Theunissen EL, Kuypers KPC, de Sousa Fernandes Perna E, Ramaekers JG (2019). Pharmacokinetic properties of 4-fluoroamphetamine in serum and oral fluid after oral ingestion. Drug Test Anal 11:1028–1034

    Google Scholar 

  59. Gjerde H, Nordfjærn T, Bretteville-Jensen AL, Edland-Gryt M, Furuhaugen H, Karinen R, Øiestad EL (2016) Comparison of drugs used by nightclub patrons and criminal offenders in Oslo, Norway. Forensic Sci Int 265:1–5

    Article  CAS  PubMed  Google Scholar 

  60. Sergi M, Bafile E, Compagnone D, Curini R, D'Ascenzo G, Romolo FS (2009) Multiclass analysis of illicit drugs in plasma and oral fluids by LC-MS/MS. Anal Bioanal Chem 393:709–718

    Article  CAS  PubMed  Google Scholar 

  61. Scientific Working Group for Forensic Toxicology (2013) Scientific Working Group for Forensic Toxicology (SWGTOX) standard practices for method validation in forensic toxicology. J Anal Toxicol 37:452–474

    Article  Google Scholar 

  62. Griswold MK, Chai PR, Krotulski AJ, Friscia M, Chapman BP, Varma N, Boyer EW, Logan BK, Babu KM (2017) A novel Oral fluid assay (LC-QTOF-MS) for the detection of fentanyl and clandestine opioids in Oral fluid after reported heroin overdose. J Med Toxicol 13:287–292

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Mohr AL, Friscia M, Logan BK (2016) Identification and prevalence determination of novel recreational drugs and discovery of their metabolites in blood, urine and oral fluid. US Department of Justice, Washington, DC

    Google Scholar 

  64. Truver MT, Swortwood MJ (2018) Quantitative analysis of novel synthetic opioids, morphine and buprenorphine in Oral fluid by LC-MS-MS. J Anal Toxicol 42:554–561

    Article  CAS  PubMed  Google Scholar 

  65. Peters FT (2014) Recent developments in urinalysis of metabolites of new psychoactive substances using LC-MS. Bioanalysis 6:2083–2107

    Article  PubMed  Google Scholar 

  66. Gunnar T, Ariniemi K, Lillsunde P (2005) Validated toxicological determination of 30 drugs of abuse as optimized derivatives in oral fluid by long column fast gas chromatography/electron impact mass spectrometry. J Mass Spectrom 40:739–753

    Article  CAS  PubMed  Google Scholar 

  67. Palmquist KB, Swortwood MJ (2019) Data-independent screening method for 14 fentanyl analogs in whole blood and oral fluid using LC-QTOF-MS. Forensic Sci Int 297:189–197

    Article  CAS  PubMed  Google Scholar 

  68. Morato NM, Pirro V, Fedick PW, Cooks RG (2019) Quantitative swab touch spray mass spectrometry for oral fluid drug testing. Anal Chem 91:7450–7457

    Article  CAS  PubMed  Google Scholar 

  69. Gesseck AM, Poklis JL, Wolf CE, Xu J, Bashir A, Hendricks-Muñoz KD, Peace MR (2020) A case study evaluating the efficacy of an Ad Hoc hospital collection device for fentanyl in infant oral fluid. J Anal Toxicol 44:741–746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Kintz P, Jamey C, Ameline A, Richeval C, Raul JS (2017) Characterization of metizolam, a designer benzodiazepine, in alternative biological specimens. Toxicol Anal Clin 29:57–63

    Google Scholar 

  71. Ameline A, Richeval C, Gaulier JM, Raul JS, Kintz P (2018) Characterization of flunitrazolam, a new designer benzodiazepine, in oral fluid after a controlled single administration. J Anal Toxicol 42:e58–e60

    Article  CAS  PubMed  Google Scholar 

  72. Ameline A, Arbouche N, Raul JS, Kintz P (2018) Documentation of a little-studied designer benzodiazepine after a controlled single administration: II. Concentration profile of deschloroetizolam in saliva. Ther Drug Monit 40:759–761

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Rosaria Varì .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Varì, M.R. et al. (2023). Target Analysis of NPS in Oral Fluid. In: Concheiro, M., Scheidweiler, K.B. (eds) Methods for Novel Psychoactive Substance Analysis . Methods in Pharmacology and Toxicology. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2605-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2605-4_7

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2604-7

  • Online ISBN: 978-1-0716-2605-4

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics