Skip to main content

Laboratory Diagnosis of Cerebral Creatine Deficiency Syndromes by Determining Creatine and Guanidinoacetate in Plasma and Urine

  • Protocol
  • First Online:
Clinical Applications of Mass Spectrometry in Biomolecular Analysis

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2546))

Abstract

Cerebral creatine deficiency syndromes are caused by the dysfunctional creatine biosynthesis or transport and comprise three hereditary neurodevelopmental defects including arginine-glycine amidinotransferase (AGAT), guanidinoacetate methyltransferase (GAMT), and creatine transporter deficiencies. All conditions are characterized by seizures, intellectual disability, and behavioral abnormalities. Laboratory diagnosis of these disorders relies on the determination of creatine and guanidinoacetate concentrations in both plasma and urine. Here we describe a rapid quantitative UPLC/MS/MS method for the simultaneous determination of these analytes using a normal-phase HILIC column after analyte derivatization. The approach is suitable for neonatal screening follow-ups and monitoring of the treatment for creatine deficiency syndromes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Joncquel-Chevalier Curt M, Voicu PM, Fontaine M et al (2015) Creatine biosynthesis and transport in health and disease. Biochimie 119:146–165

    Article  CAS  PubMed  Google Scholar 

  2. Monge C, Beraud N, Kuznetsov AV et al (2008) Regulation of respiration in brain mitochondria and synaptosomes: restrictions of ADP diffusion in situ, roles of tubulin, and mitochondrial creatine kinase. Mol Cell Biochem 318:147–165

    Article  CAS  PubMed  Google Scholar 

  3. Saks V, Kaambre T, Guzun R et al (2007) The creatine kinase phosphotransfer network: thermodynamic and kinetic considerations, the impact of the mitochondrial outer membrane and modelling approaches. Subcell Biochem 46:27–65

    Article  PubMed  Google Scholar 

  4. Saks V, Kuznetsov A, Andrienko T et al (2003) Heterogeneity of ADP diffusion and regulation of respiration in cardiac cells. Biophys J 84:3436–3456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Braissant O, Bachmann C, Henry H (2007) Expression and function of AGAT, GAMT and CT1 in the mammalian brain. Subcell Biochem 46:67–81

    Article  PubMed  Google Scholar 

  6. Fons C, Campistol J (2016) Creatine defects and central nervous system. Semin Pediatr Neurol 23:285–289

    Article  PubMed  Google Scholar 

  7. Ganesan V, Johnson A, Connelly A et al (1997) Guanidinoacetate methyltransferase deficiency: new clinical features. Pediatr Neurol 17:155–157

    Article  CAS  PubMed  Google Scholar 

  8. Item CB, Stockler-Ipsiroglu S, Stromberger C et al (2001) Arginine:glycine amidinotransferase deficiency: the third inborn error of creatine metabolism in humans. Am J Hum Genet 69:1127–1133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Salomons GS, Van Dooren SJ, Verhoeven NM et al (2001) X-linked creatine-transporter gene (SLC6A8) defect: a new creatine-deficiency syndrome. Am J Hum Genet 68:1497–1500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Stockler S, Hanefeld F, Frahm J (1996) Creatine replacement therapy in guanidinoacetate methyltransferase deficiency, a novel inborn error of metabolism. Lancet 348:789–790

    Article  CAS  PubMed  Google Scholar 

  11. Stockler S, Marescau B, De Deyn PP et al (1997) Guanidino compounds in guanidinoacetate methyltransferase deficiency, a new inborn error of creatine synthesis. Metabolism 46:1189–1193

    Article  CAS  PubMed  Google Scholar 

  12. Van Der Knaap MS, Verhoeven NM, Maaswinkel-Mooij P et al (2000) Mental retardation and behavioral problems as presenting signs of a creatine synthesis defect. Ann Neurol 47:540–543

    Article  PubMed  Google Scholar 

  13. Bahl S, Cordeiro D, Macneil L et al (2020) Urine creatine metabolite panel as a screening test in neurodevelopmental disorders. Orphanet J Rare Dis 15:339

    Article  PubMed  PubMed Central  Google Scholar 

  14. Clark JF, Cecil KM (2015) Diagnostic methods and recommendations for the cerebral creatine deficiency syndromes. Pediatr Res 77:398–405

    Article  PubMed  Google Scholar 

  15. Mercimek-Andrews S, Salomons GS (1993) Creatine deficiency syndromes. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, Mirzaa G, Amemiya A (eds) GeneReviews((R)), Seattle

    Google Scholar 

  16. Bodamer OA, Iqbal F, Mühl A et al (2009) Low creatinine: the diagnostic clue for a treatable neurologic disorder. Neurology 72:854–855

    Article  CAS  PubMed  Google Scholar 

  17. Pasquali M, Schwarz E, Jensen M et al (2014) Feasibility of newborn screening for guanidinoacetate methyltransferase (GAMT) deficiency. J Inherit Metab Dis 37:231–236

    Article  CAS  PubMed  Google Scholar 

  18. Schulze A, Hess T, Wevers R et al (1997) Creatine deficiency syndrome caused by guanidinoacetate methyltransferase deficiency: diagnostic tools for a new inborn error of metabolism. J Pediatr 131:626–631

    Article  CAS  PubMed  Google Scholar 

  19. Cheillan D, Salomons GS, Acquaviva C et al (2006) Prenatal diagnosis of guanidinoacetate methyltransferase deficiency: increased guanidinoacetate concentrations in amniotic fluid. Clin Chem 52:775–777

    Article  CAS  PubMed  Google Scholar 

  20. Braissant O, Henry H (2008) AGAT, GAMT and SLC6A8 distribution in the central nervous system, in relation to creatine deficiency syndromes: a review. J Inherit Metab Dis 31(2):230–239

    Article  CAS  PubMed  Google Scholar 

  21. Guimbal C, Kilimann MW (1993) A Na(+)-dependent creatine transporter in rabbit brain, muscle, heart, and kidney. cDNA cloning and functional expression. J Biol Chem 268:8418–8421

    Article  CAS  PubMed  Google Scholar 

  22. Clark AJ, Rosenberg EH, Almeida LS et al (2006) X-linked creatine transporter (SLC6A8) mutations in about 1% of males with mental retardation of unknown etiology. Hum Genet 119:604–610

    Article  CAS  PubMed  Google Scholar 

  23. Rosenberg EH, Almeida LS, Kleefstra T et al (2004) High prevalence of SLC6A8 deficiency in X-linked mental retardation. Am J Hum Genet 75:97–105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Salomons GS, Van Dooren SJ, Verhoeven NM et al (2003) X-linked creatine transporter defect: an overview. J Inherit Metab Dis 26:309–318

    Article  CAS  PubMed  Google Scholar 

  25. Bodamer OA, Sahoo T, Beaudet AL et al (2005) Creatine metabolism in combined methylmalonic aciduria and homocystinuria. Ann Neurol 57:557–560

    Article  CAS  PubMed  Google Scholar 

  26. Buist NR, Glenn B, Vugrek O et al (2006) S-adenosylhomocysteine hydrolase deficiency in a 26-year-old man. J Inherit Metab Dis 29:538–545

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. El-Gharbawy AH, Goldstein JL, Millington DS et al (2013) Elevation of guanidinoacetate in newborn dried blood spots and impact of early treatment in GAMT deficiency. Mol Genet Metab 109:215–217

    Article  CAS  PubMed  Google Scholar 

  28. Stockler-Ipsiroglu S, Apatean D, Battini R et al (2015) Arginine:glycine amidinotransferase (AGAT) deficiency: clinical features and long term outcomes in 16 patients diagnosed worldwide. Mol Genet Metab 116:252–259

    Article  CAS  PubMed  Google Scholar 

  29. Stockler-Ipsiroglu S, Van Karnebeek C, Longo N et al (2014) Guanidinoacetate methyltransferase (GAMT) deficiency: outcomes in 48 individuals and recommendations for diagnosis, treatment and monitoring. Mol Genet Metab 111:16–25

    Article  CAS  PubMed  Google Scholar 

  30. Arias A, Ormazabal A, Moreno J et al (2006) Methods for the diagnosis of creatine deficiency syndromes: a comparative study. J Neurosci Methods 156:305–309

    Article  CAS  PubMed  Google Scholar 

  31. Benoit R, Samir M, Boutin J et al (2019) LC-MS/MS measurements of urinary guanidinoacetic acid and creatine: method optimization by deleting derivatization step. Clin Chim Acta 493:148–155

    Article  CAS  PubMed  Google Scholar 

  32. Bodamer OA, Bloesch SM, Gregg AR et al (2001) Analysis of guanidinoacetate and creatine by isotope dilution electrospray tandem mass spectrometry. Clin Chim Acta 308:173–178

    Article  CAS  PubMed  Google Scholar 

  33. Sharer JD, Bodamer O, Longo N et al (2017) Laboratory diagnosis of creatine deficiency syndromes: a technical standard and guideline of the American College of Medical Genetics and Genomics. Genet Med 19:256–263

    Article  CAS  PubMed  Google Scholar 

  34. Struys EA, Jansen EE, Ten Brink HJ et al (1998) An accurate stable isotope dilution gas chromatographic-mass spectrometric approach to the diagnosis of guanidinoacetate methyltransferase deficiency. J Pharm Biomed Anal 18:659–665

    Article  CAS  PubMed  Google Scholar 

  35. Young S, Struys E, Wood T (2007) Quantification of creatine and guanidinoacetate using GC-MS and LC-MS/MS for the detection of cerebral creatine deficiency syndromes. Curr Protoc Hum Genet Chapter 17:Unit 17 13

    Google Scholar 

  36. Valongo C, Cardoso ML, Domingues P et al (2004) Age related reference values for urine creatine and guanidinoacetic acid concentration in children and adolescents by gas chromatography-mass spectrometry. Clin Chim Acta 348:155–161

    Article  CAS  PubMed  Google Scholar 

  37. Derave W, Marescau B, Vanden Eede E et al (2004) Plasma guanidino compounds are altered by oral creatine supplementation in healthy humans. J Appl Physiol 97:852–857

    Article  CAS  PubMed  Google Scholar 

  38. Threlfall CJ, Maxwell AR, Stoner HB (1984) Post-traumatic creatinuria. J Trauma 24:516–523

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qin Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Liu, N., Sun, Q. (2022). Laboratory Diagnosis of Cerebral Creatine Deficiency Syndromes by Determining Creatine and Guanidinoacetate in Plasma and Urine. In: Garg, U. (eds) Clinical Applications of Mass Spectrometry in Biomolecular Analysis. Methods in Molecular Biology, vol 2546. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2565-1_12

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2565-1_12

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2564-4

  • Online ISBN: 978-1-0716-2565-1

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics