Skip to main content

Human Hepatocyte Transduction with Adeno-Associated Virus Vector

  • Protocol
  • First Online:
Hepatocytes

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2544))

Abstract

As the adeno-associated virus (AAV) vectors hold unique advantages over other viral vectors, AAV gene therapy has accumulated rapid progress and development. Liver-targeted gene therapy by AAV vectors has been successfully applied in clinical trials for many diseases. Low transduction efficiency and high prevalence of neutralizing antibodies (Nabs), however, are the major obstacles to further translate this therapeutic strategy into clinical trials. Pre-clinical evaluation on hepatocytes could help to elucidate the tropism of AAV serotypes for liver-targeted gene therapy, and could also provide a test model to develop novel AAV mutants with Nabs evasion and high liver tropism. Here, we described the basic laboratory procedure to apply the AAV vector to transduce human hepatocytes in vitro and in vivo with some tips gained from our own experience.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Sobrevals L et al (2012) AAV vectors transduce hepatocytes in vivo as efficiently in cirrhotic as in healthy rat livers. Gene Ther 19(4):411–417

    Article  CAS  PubMed  Google Scholar 

  2. Baruteau J et al (2017) Gene therapy for monogenic liver diseases: clinical successes, current challenges and future prospects. J Inherit Metab Dis 40(4):497–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kattenhorn LM et al (2016) Adeno-associated virus gene therapy for liver disease. Hum Gene Ther 27(12):947–961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. George LA et al (2020) Long-term follow-up of the first in human intravascular delivery of AAV for gene transfer: AAV2-hFIX16 for severe hemophilia B. Mol Ther 28(9):2073–2082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Leng Y et al (2019) Long-term correction of copper metabolism in Wilson’s disease mice with AAV8 vector delivering truncated ATP7B. Hum Gene Ther 30(12):1494–1504

    Article  CAS  PubMed  Google Scholar 

  6. Tao R et al (2020) Long-term metabolic correction of phenylketonuria by AAV-delivered phenylalanine amino lyase. Mol Ther Methods Clin Dev 19:507–517

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. De Sabbata G et al (2021) Long-term correction of ornithine transcarbamylase deficiency in Spf-Ash mice with a translationally optimized AAV vector. Mol Ther Methods Clin Dev 20:169–180

    Article  PubMed  Google Scholar 

  8. Cabanes-Creus M et al (2020) Restoring the natural tropism of AAV2 vectors for human liver. Sci Transl Med 12(560):eaba3312

    Article  CAS  PubMed  Google Scholar 

  9. Qian R et al (2021) Directed evolution of AAV serotype 5 for increased hepatocyte transduction and retained low humoral seroreactivity. Mol Ther Methods Clin Dev 20:122–132

    Article  CAS  PubMed  Google Scholar 

  10. Havlik LP et al (2020) Coevolution of adeno-associated virus capsid antigenicity and tropism through a structure-guided approach. J Virol 94(19):e00976–e00920

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Wang L et al (2015) Comparative study of liver gene transfer with AAV vectors based on natural and engineered AAV capsids. Mol Ther 23(12):1877–1887

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tanimizu N, Miyajima A (2007) Molecular mechanism of liver development and regeneration. Int Rev Cytol 259:1–48

    Article  CAS  PubMed  Google Scholar 

  13. Zhou Z, Xu MJ, Gao B (2016) Hepatocytes: a key cell type for innate immunity. Cell Mol Immunol 13(3):301–315

    Article  CAS  PubMed  Google Scholar 

  14. Zhang K et al (2018) In vitro expansion of primary human hepatocytes with efficient liver rpopulation capacity. Cell Stem Cell 23(6):806–819 e4

    Article  CAS  PubMed  Google Scholar 

  15. Zeilinger K et al (2016) Cell sources for in vitro human liver cell culture models. Exp Biol Med (Maywood) 241(15):1684–1698

    Article  CAS  Google Scholar 

  16. Foquet L et al (2017) Successful engraftment of human hepatocytes in uPA-SCID and FRG((R)) KO mice. Methods Mol Biol 1506:117–130

    Article  CAS  PubMed  Google Scholar 

  17. Strom SC, Davila J, Grompe M (2010) Chimeric mice with humanized liver: tools for the study of drug metabolism, excretion, and toxicity. Methods Mol Biol 640:491–509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zou CH et al (2020) Experimental variables that affect human hepatocyte MV transduction in liver chimeric mice. Mol Ther Methods Clin Dev 18:189–198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Lisowski L et al (2014) Selection and evaluation of clinically relevant AAV variants in a xenograft liver model. Nature 506(7488):382–386

    Article  CAS  PubMed  Google Scholar 

  20. Davidoff AM et al (2005) Comparison of the ability of adeno-associated viral vectors pseudotyped with serotype 2, 5, and 8 capsid proteins to mediate efficient transduction of the liver in murine and nonhuman primate models. Mol Ther 11(6):875–888

    Article  CAS  PubMed  Google Scholar 

  21. Bissig-Choisat B et al (2015) Development and rescue of human familial hypercholesterolaemia in a xenograft mouse model. Nat Commun 6:7339

    Article  CAS  PubMed  Google Scholar 

  22. Ling C et al (2020) Transduction of primary human hepatocytes in vitro and in humanized murine livers in vivo by recombinant AAV3 vectors. Mol Ther 22:S2–S2

    Google Scholar 

  23. Yang H et al (2020) Enhanced transduction of human hematopoietic stem cells by AAV6 vectors: implications in gene therapy and genome editing. Mol Ther Nucleic Acids 20:451–458

    Article  PubMed  PubMed Central  Google Scholar 

  24. Batty P, Lillicrap D (2021) Hemophilia gene therapy: approaching the first licensed product. Hemasphere 5(3):e540

    Article  PubMed  PubMed Central  Google Scholar 

  25. Pipe S et al (2019) Clinical considerations for capsid choice in the development of liver-targeted AAV-based gene transfer. Mol Ther Methods Clin Dev 15:170–178

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. George LA et al (2017) Hemophilia B gene therapy with a high-specific-activity factor IX variant. New England J Med 377(23):2215–2227

    Article  CAS  Google Scholar 

  27. Li SY et al (2015) Efficient and targeted transduction of nonhuman primate liver with systemically delivered optimized AAV3B vectors. Mol Ther 23(12):1867–1876

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Paulk NK et al (2018) Bioengineered AAV capsids with combined high human liver transduction in vivo and unique humoral seroreactivity. Mol Ther 26(1):289–303

    Article  CAS  PubMed  Google Scholar 

  29. Pei X et al (2020) Development of AAV variants with human hepatocyte tropism and neutralizing antibody escape capacity. Mol Ther Methods Clin Dev 18:259–268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Shao W et al (2019) Superior human hepatocyte transduction with adeno-associated virus vector serotype 7. Gene Ther 26(12):504–514

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Grieger JC, Choi VW, Samulski RJ (2006) Production and characterization of adeno-associated viral vectors. Nat Protoc 1(3):1412–1428

    Article  CAS  PubMed  Google Scholar 

  32. Xiao X, Li J, Samulski RJ (1998) Production of high-titer recombinant adeno-associated virus vectors in the absence of helper adenovirus. J Virol 72(3):2224–2232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Gao G et al (2000) Purification of recombinant adeno-associated virus vectors by column chromatography and its performance in vivo. Hum Gene Ther 11(15):2079–2091

    Article  CAS  PubMed  Google Scholar 

  34. Kohlbrenner E, Weber T (2017) Production and characterization of vectors based on the cardiotropic AAV serotype 9. Methods Mol Biol 1521:91–107

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nudel BC et al (1989) Stability of Escherichia coli strains harboring recombinant plasmids for L-threonine production. Antonie Van Leeuwenhoek 56(3):273–282

    Article  CAS  PubMed  Google Scholar 

  36. Azuma H et al (2007) Robust expansion of human hepatocytes in Fah-/-/Rag2-/-/Il2rg-/- mice. Nat Biotechnol 25(8):903–910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Bissig KD et al (2007) Repopulation of adult and neonatal mice with human hepatocytes: a chimeric animal model. Proc Natl Acad Sci U S A 104(51):20507–20511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Adigbli G et al (2020) Humanization of immunodeficient animals for the modeling of transplantation, graft versus host disease, and regenerative medicine. Transplantation 104(11):2290–2306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Durost PA (2018) Gene therapy with an adeno-associated viral vector expressing human interleukin-2 alters immune system homeostasis in humanized mice. Hum Gene Ther 29(3):352–365

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Gorantla S et al (2007) Human immunodeficiency virus type 1 pathobiology studied in humanized BALB/c-Rag2-/-gammac-/- mice. J Virol 81(6):2700–2712

    Article  CAS  PubMed  Google Scholar 

  41. Su B et al (2011) Xeno-repopulation of Fah -/- Nod/Scid mice livers by human hepatocytes. Sci China Life Sci 54(3):227–234

    Article  CAS  PubMed  Google Scholar 

  42. Tateno C et al (2015) Generation of novel chimeric mice with humanized livers by using hemizygous cDNA-uPA/SCID mice. PLoS One 10(11):e0142145

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengwen Li .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Song, Z., Shao, W., Song, L., Pei, X., Li, C. (2022). Human Hepatocyte Transduction with Adeno-Associated Virus Vector. In: Tanimizu, N. (eds) Hepatocytes. Methods in Molecular Biology, vol 2544. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2557-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2557-6_5

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2556-9

  • Online ISBN: 978-1-0716-2557-6

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics