Skip to main content

Papillary Thyroid Carcinoma: Current Position in Epidemiology, Genomics, and Classification

  • Protocol
  • First Online:
Papillary Thyroid Carcinoma

Part of the book series: Methods in Molecular Biology ((MIMB,volume 2534))

Abstract

Papillary thyroid carcinoma is the most common type of thyroid malignancy both in adults and pediatric population. Since the 1980s, there are changes in criteria in labelling thyroid lesions as “papillary thyroid carcinomas.” Radiation exposure is a well-established risk factor for papillary thyroid carcinoma. Other environmental risk factors include dietary iodine, obesity, hormones, and environmental pollutants. Papillary thyroid carcinomas could occur in familial settings, and 5% of these familial cases have well-studied driver germline mutations. In sporadic papillary thyroid carcinoma, BRAF mutation is common and is associated with clinicopathologic and prognostic markers. The mutation could aid in the clinical diagnosis of papillary thyroid carcinoma. Globally, thyroid cancer is among the top ten commonest cancer in females. In both adult and pediatric populations, there are variations of prevalence of thyroid cancer and rising incidence rates of thyroid cancer worldwide. The increase of thyroid cancer incidence was almost entirely due to the increase of papillary thyroid carcinoma. The reasons behind the increase are complex, multifactorial, and incompletely understood. The most obvious reasons are increased use of diagnostic entities, change in classification of thyroid neoplasms, as well as factors such as obesity, environmental risk factors, and radiation. The prognosis of the patients with papillary thyroid carcinoma is generally good after treatment. Nevertheless, cancer recurrence and comorbidity of second primary cancer may occur, and it is important to have awareness of the clinical, pathological, and molecular parameters of papillary thyroid carcinoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Protocol
USD 49.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lee YM, Lo CY, Lam KY, Wan KY, Tam PK (2002) Well-differentiated thyroid carcinoma in Hong Kong Chinese patients under 21 years of age: a 35-year experience. J Am Coll Surg 194:711–716. https://doi.org/10.1016/s1072-7515(02)01139-0. PMID: 12081061

    Article  PubMed  Google Scholar 

  2. Lam AK, Lo CY, Lam KS (2005) Papillary carcinoma of thyroid: a 30-yr clinicopathological review of the histological variants. Endocr Pathol 16:323–330. https://doi.org/10.1385/ep:16:4:323. PMID: 16627919

    Article  PubMed  Google Scholar 

  3. LeClair K, Bell KJL, Furuya-Kanamori L, Doi SA, Francis DO, Davies L (2021) Evaluation of gender inequity in thyroid cancer diagnosis: differences by sex in us thyroid cancer incidence compared with a meta-analysis of subclinical thyroid cancer rates at autopsy. JAMA Intern Med 181:1351–1358. https://doi.org/10.1001/jamainternmed.2021.4804. PMID: 34459841

    Article  PubMed  Google Scholar 

  4. Xu J, Zhang Y, Liu J, Qiu S, Wang M (2021) A population-based study of the three major variants of papillary thyroid carcinoma. J Int Med Res 49:300060520984618. https://doi.org/10.1177/0300060520984618. PMID: 33535844

    Article  CAS  PubMed  Google Scholar 

  5. Chatchomchuan W, Thewjitcharoen Y, Karndumri K, Porramatikul S, Krittiyawong S, Wanothayaroj E, Vongterapak S, Butadej S, Veerasomboonsin V, Kanchanapitak A, Rajatanavin R, Himathongkam T (2021) Recurrence factors and characteristic trends of papillary thyroid cancer over three decades. Int J Endocrinol 2021:9989757. https://doi.org/10.1155/2021/9989757. PMID: 34054949

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Lang BH, Lo CY, Chan WF, Lam KY, Wan KY (2007) Prognostic factors in papillary and follicular thyroid carcinoma: their implications for cancer staging. Ann Surg Oncol 14:730–738. https://doi.org/10.1245/s10434-006-9207-5. PMID: 17103065

    Article  PubMed  Google Scholar 

  7. Li Y, Piao J, Li M (2021) Secular trends in the epidemiologic patterns of thyroid cancer in China over three decades: an updated systematic analysis of global burden of disease study 2019 data. Front Endocrinol (Lausanne) 12:707233. https://doi.org/10.3389/fendo.2021.707233. PMID: 34526968

    Article  Google Scholar 

  8. Goodman AB (1989) Paranoid schizophrenia: prognosis under DSM-II and DSM-III-R. Compr Psychiatry 30(3):259–266. https://doi.org/10.1016/0010-440x(89)90047-3. PMID: 2731425

    Article  CAS  PubMed  Google Scholar 

  9. Fridman M, Lam AK, Krasko O, Schmid KW, Branovan DI, Demidchik Y (2015) Morphological and clinical presentation of papillary thyroid carcinoma in children and adolescents of Belarus: the influence of radiation exposure and the source of irradiation. Exp Mol Pathol 98:527–531. https://doi.org/10.1016/j.yexmp.2015.03.039. PMID: 25841866

    Article  CAS  PubMed  Google Scholar 

  10. Lam AK, Lo CY (2006) Diffuse sclerosing variant of papillary carcinoma of the thyroid: a 35-year comparative study at a single institution. Ann Surg Oncol 13:176–181. https://doi.org/10.1245/ASO.2006.03.062. PMID: 16411146

    Article  PubMed  Google Scholar 

  11. Pillai S, Gopalan V, Smith RA, Lam AK (2015) Diffuse sclerosing variant of papillary thyroid carcinoma--an update of its clinicopathological features and molecular biology. Crit Rev Oncol Hematol 94:64–73. https://doi.org/10.1016/j.critrevonc.2014.12.001. PMID: 25577570

    Article  PubMed  Google Scholar 

  12. Lam AK, Fridman M (2018) Characteristics of cribriform morular variant of papillary thyroid carcinoma in post-Chernobyl affected region. Hum Pathol 74:170–177. https://doi.org/10.1016/j.humpath.2018.01.006. PMID: 29320754

    Article  PubMed  Google Scholar 

  13. Lam AK, Saremi N (2017) Cribriform-morular variant of papillary thyroid carcinoma: a distinctive type of thyroid cancer. Endocr Relat Cancer 24:R109–R121. https://doi.org/10.1530/ERC-17-0014. PMID: 28314770

    Article  CAS  PubMed  Google Scholar 

  14. Pham DX, Nguyen HD, Phung AHT, Bui TD, Tran TS, Tran BNH, Ho-Pham LT, Nguyen TV (2021) Trends in incidence and histological pattern of thyroid cancer in Ho Chi Minh City, Vietnam (1996-2015): a population-based study. BMC Cancer 21:296. https://doi.org/10.1186/s12885-021-08023-z. PMID: 33743620

    Article  PubMed  PubMed Central  Google Scholar 

  15. Chem KT, Rosai J (1977) Follicular variant of thyroid papillary carcinoma: a clinicopathologic study of six cases. Am J Surg Pathol 1:123–130. https://doi.org/10.1097/00000478-197706000-00003. PMID: 602974

    Article  CAS  PubMed  Google Scholar 

  16. Tallini G, Tuttle RM, Ghossein RA (2017) The history of the follicular variant of papillary thyroid carcinoma. J Clin Endocrinol Metab 102:15–22. https://doi.org/10.1210/jc.2016-2976. PMID: 27732333

    Article  PubMed  Google Scholar 

  17. Ghossein R, Barletta JA, Bullock M, Johnson SJ, Kakudo K, Lam AK, Moonim MT, Poller DN, Tallini G, Tuttle RM, Xu B, Gill AJ (2021) Data set for reporting carcinoma of the thyroid: recommendations from the International Collaboration on Cancer Reporting. Hum Pathol 110:62–72. https://doi.org/10.1016/j.humpath.2020.08.009. PMID: 32920035

    Article  PubMed  Google Scholar 

  18. Lam AK (2017) Pathology of endocrine tumours update: World Health Organization new classification 2017-other thyroid tumours. AJSP: Rev Rep 22:209–216

    Google Scholar 

  19. Editorial Board of World Health Organization (2022) Chapter 3, Thyroid gland. In: WHO classification of endocrine and neuroendocrine tumors, 5th edn. International Agency for Research on Cancer, Lyon

    Google Scholar 

  20. Lloyd RV, Erickson LA, Casey MB, Lam KY, Lohse CM, Asa SL, Chan JK, DeLellis RA, Harach HR, Kakudo K, LiVolsi VA, Rosai J, Sebo TJ, Sobrinho-Simoes M, Wenig BM, Lae ME (2004) Observer variation in the diagnosis of follicular variant of papillary thyroid carcinoma. Am J Surg Pathol 28:1336–1340. https://doi.org/10.1097/01.pas.0000135519.34847.f6. PMID: 15371949

    Article  PubMed  Google Scholar 

  21. Salajegheh A, Petcu EB, Smith RA, Lam AK (2008) Follicular variant of papillary thyroid carcinoma: a diagnostic challenge for clinicians and pathologists. Postgrad Med J 84(988):78–82. https://doi.org/10.1136/pgmj.2007.064881. PMID: 18322127

    Article  CAS  PubMed  Google Scholar 

  22. Shi X, Liu R, Basolo F, Giannini R, Shen X, Teng D, Guan H, Shan Z, Teng W, Musholt TJ, Al-Kuraya K, Fugazzola L, Colombo C, Kebebew E, Jarzab B, Czarniecka A, Bendlova B, Sykorova V, Sobrinho-Simões M, Soares P, Shong YK, Kim TY, Cheng S, Asa SL, Viola D, Elisei R, Yip L, Mian C, Vianello F, Wang Y, Zhao S, Oler G, Cerutti JM, Puxeddu E, Qu S, Wei Q, Xu H, O’Neill CJ, Sywak MS, Clifton-Bligh R, Lam AK, Riesco-Eizaguirre G, Santisteban P, Yu H, Tallini G, Holt EH, Vasko V, Xing M (2016) Differential clinicopathological risk and prognosis of major papillary thyroid cancer variants. J Clin Endocrinol Metab 101:264–274. https://doi.org/10.1210/jc.2015-2917. PMID: 26529630

    Article  CAS  PubMed  Google Scholar 

  23. Kitahara CM, Sosa JA, Shiels MS (2020) Influence of nomenclature changes on trends in papillary thyroid cancer incidence in the United States, 2000 to 2017. J Clin Endocrinol Metab 105:e4823–30. https://doi.org/10.1210/clinem/dgaa690. PMID: 32984898

    Article  Google Scholar 

  24. Hu MJ, Zhao HH, Li GA, Zhang HS, He JL, Huang F (2021) Body mass index and weight gain after middle adulthood are associated with risk of papillary thyroid cancer: a case-control study. Cancer Epidemiol 75:102039. https://doi.org/10.1016/j.canep.2021.102039. PMID: 34562748

    Article  PubMed  Google Scholar 

  25. Youssef MR, Reisner ASC, Attia AS, Hussein MH, Omar M, LaRussa A, Galvani CA, Aboueisha M, Abdelgawad M, Toraih EA, Randolph GW, Kandil E (2021) Obesity and the prevention of thyroid cancer: impact of body mass index and weight change on developing thyroid cancer – pooled results of 24 million cohorts. Oral Oncol 112:105085. https://doi.org/10.1016/j.oraloncology.2020.105085. PMID: 33171329

    Article  PubMed  Google Scholar 

  26. Rahman ST, Pandeya N, Neale RE, McLeod DSA, Bain CJ, Baade PD, Youl PH, Allison R, Leonard S, Jordan SJ (2020) Obesity is associated with BRAFV600E mutated thyroid cancer. Thyroid 30:1518–1527. https://doi.org/10.1089/thy.2019.0654. PMID: 32228152

    Article  CAS  PubMed  Google Scholar 

  27. Lee JH, Song RY, Yi JW, Yu HW, Kwon H, Kim SJ, Chai YJ, Choi JY, Moon JH, Lee KE, Park YJ, Park SK (2018) Case-control study of papillary thyroid carcinoma on urinary and dietary iodine status in South Korea. World J Surg 42:1424–1431. https://doi.org/10.1007/s00268-017-4287-x. PMID: 29067516

    Article  PubMed  Google Scholar 

  28. Lee JH, Hwang Y, Song RY, Yi JW, Yu HW, Kim SJ, Chai YJ, Choi JY, Lee KE, Park SK (2017) Relationship between iodine levels and papillary thyroid carcinoma: a systematic review and meta-analysis. Head Neck 39:1711–1718. https://doi.org/10.1002/hed.24797. PMID: 28513893

    Article  PubMed  Google Scholar 

  29. Pamphlett R, Doble PA, Bishop DP (2021) Mercury in the human thyroid gland: potential implications for thyroid cancer, autoimmune thyroiditis, and hypothyroidism. PLoS One 16:e0246748. https://doi.org/10.1371/journal.pone.0246748. PMID: 33561145

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Park E, Kim S, Song SH, Lee CW, Kwon JT, Lim MK, Park EY, Won YJ, Jung KW, Kim B (2021) Environmental exposure to cadmium and risk of thyroid cancer from national industrial complex areas: a population-based cohort study. Chemosphere 268:128819. https://doi.org/10.1016/j.chemosphere.2020.128819. PMID: 33153845

    Article  CAS  PubMed  Google Scholar 

  31. Zhang C, Wu HB, Cheng MX, Wang L, Gao CB, Huang F (2019) Association of exposure to multiple metals with papillary thyroid cancer risk in China. Environ Sci Pollut Res Int 26:20560–20572. https://doi.org/10.1007/s11356-019-04733-x. PMID: 31104243

    Article  CAS  PubMed  Google Scholar 

  32. Malandrino P, Russo M, Ronchi A, Minoia C, Cataldo D, Regalbuto C, Giordano C, Attard M, Squatrito S, Trimarchi F, Vigneri R (2016) Increased thyroid cancer incidence in a basaltic volcanic area is associated with non-anthropogenic pollution and biocontamination. Endocrine 53:471–479. https://doi.org/10.1007/s12020-015-0761-0. PMID: 26438396

    Article  CAS  PubMed  Google Scholar 

  33. Huang H, Sjodin A, Chen Y, Ni X, Ma S, Yu H, Ward MH, Udelsman R, Rusiecki J, Zhang Y (2020) Polybrominated diphenyl ethers, polybrominated biphenyls, and risk of papillary thyroid cancer: a nested case-control study. Am J Epidemiol 189:120–132. https://doi.org/10.1093/aje/kwz229. PMID: 31742588

    Article  PubMed  Google Scholar 

  34. Nettore IC, Colao A, Macchia PE (2018) Nutritional and environmental factors in thyroid carcinogenesis. Int J Environ Res Public Health 15(8):1735. https://doi.org/10.3390/ijerph15081735. PMID: 30104523

    Article  CAS  PubMed Central  Google Scholar 

  35. Massimino M, Gandola L, Seregni E, Bongarzone I, Morosi C, Collini P (2009) Thyroid iatrogenic sequelae after the treatment of pediatric cancer. Q J Nucl Med Mol Imaging 53:526–535. PMID: 19910906

    CAS  PubMed  Google Scholar 

  36. Furukawa K, Preston D, Funamoto S, Yonehara S, Ito M, Tokuoka S, Sugiyama H, Soda M, Ozasa K, Mabuchi K (2013) Long-term trend of thyroid cancer risk among Japanese atomic-bomb survivors: 60 years after exposure. Int J Cancer 132:1222–1226. https://doi.org/10.1002/ijc.27749. PMID: 22847218

    Article  CAS  PubMed  Google Scholar 

  37. Ory C, Leboulleux S, Salvatore D, Le Guen B, De Vathaire F, Chevillard S, Schlumberger M (2021) Consequences of atmospheric contamination by radioiodine: the Chernobyl and Fukushima accidents. Endocrine 71:298–309. https://doi.org/10.1007/s12020-020-02498-9. PMID: 33025561

    Article  CAS  PubMed  Google Scholar 

  38. Fridman M, Lam AK, Krasko O (2016) Characteristics of young adults of Belarus with post-Chernobyl papillary thyroid carcinoma: a long-term follow-up of patients with early exposure to radiation at the 30th anniversary of the accident. Clin Endocrinol 85:971–978. https://doi.org/10.1111/cen.13137. PMID: 27314225

    Article  Google Scholar 

  39. Fridman M, Krasko O, Lam AK (2018) Optimizing treatment for children and adolescents with papillary thyroid carcinoma in post-Chernobyl exposed region: the roles of lymph node dissections in the central and lateral neck compartments. Eur J Surg Oncol 44:733–743. https://doi.org/10.1016/j.ejso.2017.12.004. PMID: 29397264

    Article  PubMed  Google Scholar 

  40. Bogdanova TI, Saenko VA, Hashimoto Y, Hirokawa M, Zurnadzhy LY, Hayashi T, Ito M, Iwadate M, Mitsutake N, Rogounovitch TI, Sakamoto A, Naganuma H, Miyauchi A, Tronko MD, Thomas G, Yamashita S, Suzuki S (2021) Papillary thyroid carcinoma in Ukraine after Chernobyl and in Japan after Fukushima: different histopathological scenarios. Thyroid 31:1322–1334. https://doi.org/10.1089/thy.2020.0308. PMID: 33143557

    Article  CAS  PubMed  Google Scholar 

  41. Drozd V, Saenko V, Branovan DI, Brown K, Yamashita S, Reiners C (2021) A search for causes of rising incidence of differentiated thyroid cancer in children and adolescents after Chernobyl and Fukushima: comparison of the clinical features and their relevance for treatment and prognosis. Int J Environ Res Public Health 18:3444. https://doi.org/10.3390/ijerph18073444. PMID: 33810323

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. de Vocht F (2021) Interpretation of time trends (1996-2017) of the incidence of selected cancers in England in relation to mobile phone use as a possible risk factor. Bioelectromagnetics 42(8):609–615. https://doi.org/10.1002/bem.22375. PMID: 34633685

    Article  PubMed  Google Scholar 

  43. Carlberg M, Koppel T, Hedendahl LK, Hardell L (2020) Is the increasing incidence of thyroid cancer in the nordic countries caused by use of mobile phones? Int J Environ Res Public Health 17:9129. https://doi.org/10.3390/ijerph17239129. PMID: 33297463

    Article  CAS  PubMed Central  Google Scholar 

  44. Guilmette J, Nosé V (2018) Hereditary and familial thyroid tumours. Histopathology 72:70–81. https://doi.org/10.1111/his.13373. PMID: 29239041

    Article  PubMed  Google Scholar 

  45. Peiling Yang S, Ngeow J (2016) Familial non-medullary thyroid cancer: unravelling the genetic maze. Endocr Relat Cancer 23:R577–R595. https://doi.org/10.1530/ERC-16-0067. PMID: 27807061

    Article  PubMed  Google Scholar 

  46. Orois A, Mora M, Halperin I, Oriola J (2021) Familial non medullary thyroid carcinoma: beyond the syndromic forms. Endocrinol Diabetes Nutr (Engl Ed) 68:260–269. https://doi.org/10.1016/j.endien.2020.08.013. PMID: 34266638

    Article  Google Scholar 

  47. Rossi G, Bertero L, Marchiò C, Papotti M (2018) Molecular alterations of neuroendocrine tumours of the lung. Histopathology 72:142–152. https://doi.org/10.1111/his.13394. PMID: 29239031

    Article  PubMed  Google Scholar 

  48. Ammar SA, Alobuia WM, Kebebew E (2020) An update on familial nonmedullary thyroid cancer. Endocrine 68:502–507. https://doi.org/10.1007/s12020-020-02250-3. PMID: 32162184

    Article  CAS  PubMed  Google Scholar 

  49. Miasaki FY, Fuziwara CS, Carvalho GA, Kimura ET (2020) Genetic mutations and variants in the susceptibility of familial non-medullary thyroid cancer. Genes (Basel) 11:1364. https://doi.org/10.3390/genes11111364. PMID: 33218058

    Article  CAS  Google Scholar 

  50. Pavlidis E, Sapalidis K, Chatzinikolaou F, Kesisoglou I (2020) Medullary thyroid cancer: molecular factors, management and treatment. Rom J Morphol Embryol 61:681–686. https://doi.org/10.47162/RJME.61.3.06. PMID: 33817709

    Article  PubMed  Google Scholar 

  51. Capezzone M, Robenshtok E, Cantara S, Castagna MG (2021) Familial non-medullary thyroid cancer: a critical review. J Endocrinol Investig 44:943–950. https://doi.org/10.1007/s40618-020-01435-x. PMID: 33025555

    Article  CAS  Google Scholar 

  52. de Carlos Artajo J, Irigaray Echarri A, García Torres J, Pineda Arribas JJ, Ernaga Lorea A, Eguílaz Esparza N, Zubiría Gortázar JM, Anda Apiñániz E (2021) Clinical characteristics and prognosis of familial nonmedullary thyroid carcinoma. Endocrinol Diabetes Nutr (Engl Ed):S2530-0164(21)00192-0. https://doi.org/10.1016/j.endinu.2021.04.012. PMID: 34503933

  53. Byun SH, Min C, Choi HG, Hong SJ (2020) Association between family histories of thyroid cancer and thyroid cancer incidence: a cross-sectional study using the Korean genome and epidemiology study data. Genes (Basel) 11:1039. https://doi.org/10.3390/genes11091039. PMID: 32899186

    Article  CAS  Google Scholar 

  54. Spinelli C, Piccolotti I, Bertocchini A, Morganti R, Materazzi G, Tonacchera M, Strambi S (2021) Familial non-medullary thyroid carcinoma in pediatric age: our surgical experience. World J Surg 45:2473–2479. https://doi.org/10.1007/s00268-021-06104-5. PMID: 33891138

    Article  PubMed  PubMed Central  Google Scholar 

  55. Smith RA, Salajegheh A, Weinstein S, Nassiri M, Lam AK (2011) Correlation between BRAF mutation and the clinicopathological parameters in papillary thyroid carcinoma with particular reference to follicular variant. Hum Pathol 42(4):500–506. https://doi.org/10.1016/j.humpath.2009.09.023. PMID: 21167555

    Article  CAS  PubMed  Google Scholar 

  56. Xing M, Alzahrani AS, Carson KA, Viola D, Elisei R, Bendlova B, Yip L, Mian C, Vianello F, Tuttle RM, Robenshtok E, Fagin JA, Puxeddu E, Fugazzola L, Czarniecka A, Jarzab B, O’Neill CJ, Sywak MS, Lam AK, Riesco-Eizaguirre G, Santisteban P, Nakayama H, Tufano RP, Pai SI, Zeiger MA, Westra WH, Clark DP, Clifton-Bligh R, Sidransky D, Ladenson PW, Sykorova V (2013) Association between BRAF V600E mutation and mortality in patients with papillary thyroid cancer. JAMA 309:1493–1501. https://doi.org/10.1001/jama.2013.3190. PMID: 23571588

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Sheng D, Yu X, Li H, Zhang M, Chen J (2021) BRAF V600E mutation and the Bethesda System for Reporting Thyroid Cytopathology of fine-needle aspiration biopsy for distinguishing benign from malignant thyroid nodules. Medicine (Baltimore) 100:e27167. https://doi.org/10.1097/MD.0000000000027167. PMID: 34664843

    Article  CAS  Google Scholar 

  58. Rahman MA, Salajegheh A, Smith RA, Lam AK (2016) Inhibition of BRAF kinase suppresses cellular proliferation, but not enough for complete growth arrest in BRAF V600E mutated papillary and undifferentiated thyroid carcinomas. Endocrine 54:129–138. https://doi.org/10.1007/s12020-016-0985-7. PMID: 27179656

    Article  CAS  PubMed  Google Scholar 

  59. Rahman MA, Salajegheh A, Smith RA, Lam AK (2015) Multiple proliferation-survival signalling pathways are simultaneously active in BRAF V600E mutated thyroid carcinomas. Exp Mol Pathol 99:492–497. https://doi.org/10.1016/j.yexmp.2015.09.006. PMID: 26403329

    Article  CAS  PubMed  Google Scholar 

  60. Rahman MA, Salajegheh A, Smith RA, Lam AK (2015) MicroRNA-126 suppresses proliferation of undifferentiated (BRAF(V600E) and BRAF(WT)) thyroid carcinoma through targeting PIK3R2 gene and repressing PI3K-AKT proliferation-survival signalling pathway. Exp Cell Res 339:342–350. https://doi.org/10.1016/j.yexcr.2015.09.010. PMID: 26384552

    Article  CAS  PubMed  Google Scholar 

  61. Rahman MA, Salajegheh A, Smith RA, Lam AK (2014) BRAF inhibitor therapy for melanoma, thyroid and colorectal cancers: development of resistance and future prospects. Curr Cancer Drug Targets 14:128–143. https://doi.org/10.2174/1568009614666140121150930. PMID: 24446739

    Article  CAS  PubMed  Google Scholar 

  62. Tao Y, Wang F, Shen X, Zhu G, Liu R, Viola D, Elisei R, Puxeddu E, Fugazzola L, Colombo C, Jarzab B, Czarniecka A, Lam AK, Mian C, Vianello F, Yip L, Riesco-Eizaguirre G, Santisteban P, O’Neill CJ, Sywak MS, Clifton-Bligh R, Bendlova B, Sýkorová V, Zhao S, Wang Y, Xing M (2021) BRAF V600E status sharply differentiates lymph node metastasis-associated mortality risk in papillary thyroid cancer. J Clin Endocrinol Metab 106:3228–3238. https://doi.org/10.1210/clinem/dgab286. PMID: 34273152

    Article  PubMed  Google Scholar 

  63. Wang F, Zhao S, Shen X, Zhu G, Liu R, Viola D, Elisei R, Puxeddu E, Fugazzola L, Colombo C, Jarzab B, Czarniecka A, Lam AK, Mian C, Vianello F, Yip L, Riesco-Eizaguirre G, Santisteban P, O’Neill CJ, Sywak MS, Clifton-Bligh R, Bendlova B, Sýkorová V, Wang Y, Xing M (2018) BRAF V600E confers male sex disease-specific mortality risk in patients with papillary thyroid cancer. J Clin Oncol 36:2787–2795. https://doi.org/10.1200/JCO.2018.78.5097. PMID: 30070937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Shen X, Zhu G, Liu R, Viola D, Elisei R, Puxeddu E, Fugazzola L, Colombo C, Jarzab B, Czarniecka A, Lam AK, Mian C, Vianello F, Yip L, Riesco-Eizaguirre G, Santisteban P, O’Neill CJ, Sywak MS, Clifton-Bligh R, Bendlova B, Sýkorová V, Xing M (2018) Patient age-associated mortality risk is differentiated by BRAF V600E status in papillary thyroid cancer. J Clin Oncol 36:438–445. https://doi.org/10.1200/JCO.2017.74.5497. PMID: 29240540

    Article  CAS  PubMed  Google Scholar 

  65. Xing M, Alzahrani AS, Carson KA, Shong YK, Kim TY, Viola D, Elisei R, Bendlová B, Yip L, Mian C, Vianello F, Tuttle RM, Robenshtok E, Fagin JA, Puxeddu E, Fugazzola L, Czarniecka A, Jarzab B, O’Neill CJ, Sywak MS, Lam AK, Riesco-Eizaguirre G, Santisteban P, Nakayama H, Clifton-Bligh R, Tallini G, Holt EH, Sýkorová V (2015) Association between BRAF V600E mutation and recurrence of papillary thyroid cancer. J Clin Oncol 33:42–50. https://doi.org/10.1200/JCO.2014.56.8253. PMID: 25332244

    Article  PubMed  Google Scholar 

  66. Huang Y, Qu S, Zhu G, Wang F, Liu R, Shen X, Viola D, Elisei R, Puxeddu E, Fugazzola L, Colombo C, Jarzab B, Czarniecka A, Lam AK, Mian C, Vianello F, Yip L, Riesco-Eizaguirre G, Santisteban P, O’Neill CJ, Sywak MS, Clifton-Bligh R, Bendlova B, Sýkorová V, Xing M (2018) BRAF V600E mutation-assisted risk stratification of solitary intrathyroidal papillary thyroid cancer for precision treatment. J Natl Cancer Inst 110:362–370. https://doi.org/10.1093/jnci/djx227. PMID: 29165667

    Article  PubMed  Google Scholar 

  67. Kim KJ, Kim SG, Tan J, Shen X, Viola D, Elisei R, Puxeddu E, Fugazzola L, Colombo C, Jarzab B, Czarniecka A, Lam AK, Mian C, Vianello F, Yip L, Riesco-Eizaguirre G, Santisteban P, O’Neill CJ, Sywak MS, Clifton-Bligh R, Bendlova B, Sýkorová V, Xing M (2020) BRAF V600E status may facilitate decision-making on active surveillance of low-risk papillary thyroid microcarcinoma. Eur J Cancer 124:161–169. https://doi.org/10.1016/j.ejca.2019.10.017. PMID: 31790974

    Article  CAS  PubMed  Google Scholar 

  68. Chen B, Shi Y, Xu Y, Zhang J (2021) The predictive value of coexisting BRAFV600E and TERT promoter mutations on poor outcomes and high tumour aggressiveness in papillary thyroid carcinoma: a systematic review and meta-analysis. Clin Endocrinol 94:731–742. https://doi.org/10.1111/cen.14316. PMID: 32816325

    Article  CAS  Google Scholar 

  69. Morariu EM, McCoy KL, Chiosea SI, Nikitski AV, Manroa P, Nikiforova MN, Nikiforov YE (2021) Clinicopathologic characteristics of thyroid nodules positive for the THADA-IGF2BP3 fusion on preoperative molecular analysis. Thyroid 31:1212–1218. https://doi.org/10.1089/thy.2020.0589. PMID: 33487086

    Article  CAS  PubMed  Google Scholar 

  70. Panebianco F, Nikitski AV, Nikiforova MN, Kaya C, Yip L, Condello V, Wald AI, Nikiforov YE, Chiosea SI (2019) Characterization of thyroid cancer driven by known and novel ALK fusions. Endocr Relat Cancer 26:803–814. https://doi.org/10.1530/ERC-19-0325. PMID: 31539879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Prasad ML, Vyas M, Horne MJ, Virk RK, Morotti R, Liu Z, Tallini G, Nikiforova MN, Christison-Lagay ER, Udelsman R, Dinauer CA, Nikiforov YE (2016) NTRK fusion oncogenes in pediatric papillary thyroid carcinoma in northeast United States. Cancer 122:1097–1107. https://doi.org/10.1002/cncr.29887. PMID: 26784937

    Article  CAS  PubMed  Google Scholar 

  72. Borrelli N, Panebianco F, Condello V, Barletta JA, Kaya C, Yip L, Nikiforova MN, Nikiforov YE (2019) Characterization of activating mutations of the MEK1 gene in papillary thyroid carcinomas. Thyroid 29:1279–1285. https://doi.org/10.1089/thy.2019.0065. PMID: 31407636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Nikiforov YE (2016) Thyroid cancer in 2015: molecular landscape of thyroid cancer continues to be deciphered. Nat Rev Endocrinol 12(2):67–68. https://doi.org/10.1038/nrendo.2015.217. PMID: 26668120

    Article  CAS  PubMed  Google Scholar 

  74. Yakushina VD, Lerner LV, Lavrov AV (2018) Gene fusions in thyroid cancer. Thyroid 28:158–167. https://doi.org/10.1089/thy.2017.0318. PMID: 29281951

    Article  PubMed  Google Scholar 

  75. Pekova B, Sykorova V, Mastnikova K, Vaclavikova E, Moravcova J, Vlcek P, Lastuvka P, Taudy M, Katra R, Bavor P, Kodetova D, Chovanec M, Drozenova J, Astl J, Hrabal P, Vcelak J, Bendlova B (2021) NTRK fusion genes in thyroid carcinomas: clinicopathological characteristics and their impacts on prognosis. Cancers (Basel) 13(8):1932. https://doi.org/10.3390/cancers13081932. PMID: 33923728

    Article  CAS  Google Scholar 

  76. Romei C, Elisei R (2021) A narrative review of genetic alterations in primary thyroid epithelial cancer. Int J Mol Sci 22:1726. https://doi.org/10.3390/ijms22041726. PMID: 33572167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Pacini F, Elisei R, Romei C, Pinchera A (2000) RET proto-oncogene mutations in thyroid carcinomas: clinical relevance. J Endocrinol Investig 223:328–338. https://doi.org/10.1007/BF03343732. PMID: 10882153

    Article  Google Scholar 

  78. Romei C, Ciampi R, Elisei R (2016) A comprehensive overview of the role of the RET proto-oncogene in thyroid carcinoma. Nat Rev Endocrinol 12:192–202. https://doi.org/10.1038/nrendo.2016.11. PMID: 26868437

    Article  CAS  PubMed  Google Scholar 

  79. Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F (2021) Global Cancer Statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin 71:209–249. https://doi.org/10.3322/caac.21660. Epub 2021 Feb 4. PMID: 33538338

    Article  PubMed  Google Scholar 

  80. Lortet-Tieulent J, Franceschi S, Dal Maso L, Vaccarella S (2019) Thyroid cancer “epidemic” also occurs in low- and middle-income countries. Int J Cancer 144:2082–2087. https://doi.org/10.1002/ijc.31884. PMID: 30242835

    Article  CAS  PubMed  Google Scholar 

  81. Olson E, Wintheiser G, Wolfe KM, Droessler J, Silberstein PT (2019) Epidemiology of thyroid cancer: a review of the National Cancer Database, 2000-2013. Cureus 11:e4127. https://doi.org/10.7759/cureus.4127. PMID: 31049276

    Article  PubMed  PubMed Central  Google Scholar 

  82. Boukheris H, Bachir Bouiadjra N (2021) Thyroid cancer incidence and trends by demographic and tumor characteristics in Oran, Algeria: 1993-2013, a population-based analysis. Eur J Cancer Prev (in press). https://doi.org/10.1097/CEJ.0000000000000699. PMID: 34519694

  83. Vaccarella S, Lortet-Tieulent J, Colombet M, Davies L, Stiller CA, Schüz J, Togawa K, Bray F, Franceschi S, Dal Maso L, Steliarova-Foucher E, IICC-3 Contributors (2021) Global patterns and trends in incidence and mortality of thyroid cancer in children and adolescents: a population-based study. Lancet Diabetes Endocrinol 9:144–152. https://doi.org/10.1016/S2213-8587(20)30401-0. PMID: 33482107

    Article  PubMed  Google Scholar 

  84. Lim H, Devesa SS, Sosa JA, Check D, Kitahara CM (2017) Trends in thyroid cancer incidence and mortality in the United States, 1974-2013. JAMA 317:1338–1348. https://doi.org/10.1001/jama.2017.2719. PMID: 28362912

    Article  PubMed  PubMed Central  Google Scholar 

  85. Loizou L, Demetriou A, Erdmann F, Borkhardt A, Brozou T, Sharp L, McNally R (2021) Increasing incidence and survival of paediatric and adolescent thyroid cancer in Cyprus 1998-2017: a population-based study from the Cyprus Pediatric Oncology Registry. Cancer Epidemiol 74:101979. https://doi.org/10.1016/j.canep.2021.101979. PMID: 34247065

    Article  PubMed  Google Scholar 

  86. Li M, Pei J, Xu M, Shu T, Qin C, Hu M, Zhang Y, Jiang M, Zhu C (2021) Changing incidence and projections of thyroid cancer in mainland China, 1983-2032: evidence from Cancer Incidence in Five Continents. Cancer Causes Control 32:1095–1105. https://doi.org/10.1007/s10552-021-01458-6. PMID: 34152517

    Article  PubMed  Google Scholar 

  87. Park J, Park H, Kim TH, Kim SW, Jang HW, Chung JH (2021) Trends in childhood thyroid cancer incidence in Korea and its potential risk factors. Front Endocrinol (Lausanne) 12:681148. https://doi.org/10.3389/fendo.2021.681148. PMID: 34054738

    Article  Google Scholar 

  88. Oh CM, Lim J, Jung YS, Kim Y, Jung KW, Hong S, Won YJ (2021) Decreasing trends in thyroid cancer incidence in South Korea: what happened in South Korea? Cancer Med 10:4087–4096. https://doi.org/10.1002/cam4.3926. PMID: 33979040

    Article  PubMed  PubMed Central  Google Scholar 

  89. de Morais Fernandes FCG, de Souza DLB, Curado MP, de Souza TA, de Almeida Medeiros A, Barbosa IR (2021) Incidence and mortality from thyroid cancer in Latin America. Tropical Med Int Health 26:800–809. https://doi.org/10.1111/tmi.13585. PMID: 33837603

    Article  Google Scholar 

  90. Lee YA, Yun HR, Lee J, Moon H, Shin CH, Kim SG, Park YJ (2021) Trends in pediatric thyroid cancer incidence, treatment, and clinical course in Korea during 2004-2016: a nationwide population-based study. Thyroid 31:902–911. https://doi.org/10.1089/thy.2020.0155. PMID: 33107409

    Article  CAS  PubMed  Google Scholar 

  91. Lin JS, Bowles EJA, Williams SB, Morrison CC (2017) Screening for thyroid cancer: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA 317(18):1888–1903. https://doi.org/10.1001/jama.2017.0562. PMID: 28492904

    Article  PubMed  Google Scholar 

  92. Kitahara CM, Sosa JA (2020) Understanding the ever-changing incidence of thyroid cancer. Nat Rev Endocrinol 16:617–618. https://doi.org/10.1038/s41574-020-00414-9. PMID: 32895503

    Article  PubMed  PubMed Central  Google Scholar 

  93. Cao YM, Zhang TT, Li BY, Qu N, Zhu YX (2021) Prognostic evaluation model for papillary thyroid cancer: a retrospective study of 660 cases. Gland Surg 10:2170–2179. https://doi.org/10.21037/gs-21-100. PMID: 34422588

    Article  PubMed  PubMed Central  Google Scholar 

  94. Ito Y, Miyauchi A, Kihara M, Fukushima M, Higashiyama T, Miya A (2018) Overall survival of papillary thyroid carcinoma patients: a single-institution long-term follow-up of 5897 patients. World J Surg 42:615–622. https://doi.org/10.1007/s00268-018-4479-z. PMID: 29349484

    Article  PubMed  PubMed Central  Google Scholar 

  95. Kim SY, Kim YI, Kim HJ, Chang H, Kim SM, Lee YS, Kwon SS, Shin H, Chang HS, Park CS (2021) New approach of prediction of recurrence in thyroid cancer patients using machine learning. Medicine (Baltimore) 100:e27493. https://doi.org/10.1097/MD.0000000000027493. PMID: 34678881

    Article  CAS  Google Scholar 

  96. Ywata de Carvalho A, Kohler HF, Gomes CC, Vartanian JG, Kowalski LP (2021) Predictive factors for recurrence of papillary thyroid carcinoma: analysis of 4,085 patients. Acta Otorhinolaryngol Ital 41:236–242. https://doi.org/10.14639/0392-100X-N1412. PMID: 34264917

    Article  PubMed  PubMed Central  Google Scholar 

  97. Yau T, Lo CY, Epstein RJ, Lam AK, Wan KY, Lang BH (2008) Treatment outcomes in anaplastic thyroid carcinoma: survival improvement in young patients with localized disease treated by combination of surgery and radiotherapy. Ann Surg Oncol 15:2500–2505. https://doi.org/10.1245/s10434-008-0005-0. PMID: 18581185

    Article  PubMed  Google Scholar 

  98. Lam KY, Lo CY, Chan KW, Wan KY (2000) Insular and anaplastic carcinoma of the thyroid: a 45-year comparative study at a single institution and a review of the significance of p53 and p21. Ann Surg 231:329–338. https://doi.org/10.1097/00000658-200003000-00005. PMID: 10714625

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Volante M, Lam AK, Papotti M, Tallini G (2021) Molecular pathology of poorly differentiated and anaplastic thyroid cancer: what do pathologists need to know? Endocr Pathol 32:63–76. https://doi.org/10.1007/s12022-021-09665-2. PMID: 33543394

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Abe I, Lam AK (2021) Anaplastic thyroid carcinoma: updates on WHO classification, clinicopathological features and staging. Histol Histopathol 36:239–248. https://doi.org/10.14670/HH-18-277. PMID: 33170501

    Article  PubMed  Google Scholar 

  101. Nunes KS, Matos LL, Cavalheiro BG, Magnabosco FF, Tavares MR, Kulcsar MA, Hoff AO, Kowalski LP, Leite AK (2022) Risk factors associated with disease-specific mortality in papillary thyroid cancer patients with distant metastases. Endocrine 75(3):814–822. https://doi.org/10.1007/s12020-021-02901-z. PMID: 34665427

    Article  CAS  PubMed  Google Scholar 

  102. Lo CY, Chan WF, Lang BH, Lam KY, Wan KY (2006) Papillary microcarcinoma: is there any difference between clinically overt and occult tumors? World J Surg 30:759–766. https://doi.org/10.1007/s00268-005-0363-8. PMID: 16680591

    Article  PubMed  Google Scholar 

  103. Crocetti E, Mattioli V, Buzzoni C, Franceschi S, Serraino D, Vaccarella S, Ferretti S, Busco S, Fedeli U, Varvarà M, Falcini F, Zorzi M, Carrozzi G, Mazzucco W, Gasparotti C, Iacovacci S, Toffolutti F, Cavallo R, Stracci F, Russo AG, Caldarella A, Rosso S, Musolino A, Mangone L, Casella C, Fusco M, Tagliabue G, Piras D, Tumino R, Guarda L, Dinaro YM, Piffer S, Pinna P, Mazzoleni G, Fanetti AC, Dal Maso L, for AIRTUM Working Group (2021) Risk of thyroid as a first or second primary cancer. A population-based study in Italy, 1998-2012. Cancer Med 10:6855–6867. https://doi.org/10.1002/cam4.4193. PMID: 34533289

    Article  PubMed  PubMed Central  Google Scholar 

  104. Fridman M, Krasko O, Levin L, Veyalkin I, Lam AK (2021) Comparative pathological characteristics of papillary thyroid carcinoma with second primary non-thyroid malignancies in the region affected by the Chernobyl accident. Pathol Res Pract 228:153658. https://doi.org/10.1016/j.prp.2021.153658. PMID: 34749211

    Article  CAS  PubMed  Google Scholar 

  105. Fridman M, Krasko O, Levin L, Veyalkin I, Lam AK (2021) Second primary malignancies in patients with papillary thyroid carcinoma after effect of post-Chernobyl irradiation: a risk analysis of more than two decades of observations. Cancer Epidemiol 70:101860. https://doi.org/10.1016/j.canep.2020.101860. PMID: 33260097

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alfred K. Lam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Science+Business Media, LLC, part of Springer Nature

About this protocol

Check for updates. Verify currency and authenticity via CrossMark

Cite this protocol

Lam, A.K. (2022). Papillary Thyroid Carcinoma: Current Position in Epidemiology, Genomics, and Classification. In: Lam, A.K. (eds) Papillary Thyroid Carcinoma. Methods in Molecular Biology, vol 2534. Humana, New York, NY. https://doi.org/10.1007/978-1-0716-2505-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-1-0716-2505-7_1

  • Published:

  • Publisher Name: Humana, New York, NY

  • Print ISBN: 978-1-0716-2504-0

  • Online ISBN: 978-1-0716-2505-7

  • eBook Packages: Springer Protocols

Publish with us

Policies and ethics